aboutsummaryrefslogtreecommitdiff
path: root/analysis/scripts/metrics.py
blob: a504227b5b88257fa99d462659e44b0d480c4302 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-

"""
Evaluation metrics

Author: G.J.J. van den Burg
Copyright (c) 2020 - The Alan Turing Institute
License: See the LICENSE file.

"""


def true_positives(T, X, margin=5):
    """Compute true positives without double counting

    >>> true_positives({1, 10, 20, 23}, {3, 8, 20})
    {1, 10, 20}
    >>> true_positives({1, 10, 20, 23}, {1, 3, 8, 20})
    {1, 10, 20}
    >>> true_positives({1, 10, 20, 23}, {1, 3, 5, 8, 20})
    {1, 10, 20}
    >>> true_positives(set(), {1, 2, 3})
    set()
    >>> true_positives({1, 2, 3}, set())
    set()
    """
    # make a copy so we don't affect the caller
    X = set(list(X))
    TP = set()
    for tau in T:
        close = [(abs(tau - x), x) for x in X if abs(tau - x) <= margin]
        close.sort()
        if not close:
            continue
        dist, xstar = close[0]
        TP.add(tau)
        X.remove(xstar)
    return TP


def f_measure(annotations, predictions, margin=5, alpha=0.5, return_PR=False):
    """Compute the F-measure based on human annotations.

    annotations : dict from user_id to iterable of CP locations
    predictions : iterable of predicted CP locations
    alpha : value for the F-measure, alpha=0.5 gives the F1-measure
    return_PR : whether to return precision and recall too

    Remember that all CP locations are 0-based!

    >>> f_measure({1: [10, 20], 2: [11, 20], 3: [10], 4: [0, 5]}, [10, 20])
    1.0
    >>> f_measure({1: [], 2: [10], 3: [50]}, [10])
    0.9090909090909091
    >>> f_measure({1: [], 2: [10], 3: [50]}, [])
    0.8
    """
    # ensure 0 is in all the sets
    Tks = {k + 1: set(annotations[uid]) for k, uid in enumerate(annotations)}
    for Tk in Tks.values():
        Tk.add(0)

    X = set(predictions)
    X.add(0)

    Tstar = set()
    for Tk in Tks.values():
        for tau in Tk:
            Tstar.add(tau)

    K = len(Tks)

    P = len(true_positives(Tstar, X, margin=margin)) / len(X)

    TPk = {k: true_positives(Tks[k], X, margin=margin) for k in Tks}
    R = 1 / K * sum(len(TPk[k]) / len(Tks[k]) for k in Tks)

    F = P * R / (alpha * R + (1 - alpha) * P)
    if return_PR:
        return F, P, R
    return F


def overlap(A, B):
    """ Return the overlap (i.e. Jaccard index) of two sets

    >>> overlap({1, 2, 3}, set())
    0.0
    >>> overlap({1, 2, 3}, {2, 5})
    0.25
    >>> overlap(set(), {1, 2, 3})
    0.0
    >>> overlap({1, 2, 3}, {1, 2, 3})
    1.0
    """
    return len(A.intersection(B)) / len(A.union(B))


def partition_from_cps(locations, n_obs):
    """ Return a list of sets that give a partition of the set [0, T-1], as 
    defined by the change point locations.

    >>> partition_from_cps([], 5)
    [{0, 1, 2, 3, 4}]
    >>> partition_from_cps([3, 5], 8)
    [{0, 1, 2}, {3, 4}, {5, 6, 7}]
    >>> partition_from_cps([1,2,7], 8)
    [{0}, {1}, {2, 3, 4, 5, 6}, {7}]
    >>> partition_from_cps([0, 4], 6)
    [{0, 1, 2, 3}, {4, 5}]
    """
    T = n_obs
    partition = []
    current = set()

    all_cps = iter(sorted(set(locations)))
    cp = next(all_cps, None)
    for i in range(T):
        if i == cp:
            if current:
                partition.append(current)
            current = set()
            cp = next(all_cps, None)
        current.add(i)
    partition.append(current)
    return partition


def cover_single(Sprime, S):
    """Compute the covering of a segmentation S by a segmentation Sprime.

    This follows equation (8) in Arbaleaz, 2010.

    >>> cover_single([{1, 2, 3}, {4, 5}, {6}], [{1, 2, 3}, {4, 5, 6}])
    0.8333333333333334
    >>> cover_single([{1, 2, 3, 4}, {5, 6}], [{1, 2, 3, 4, 5, 6}])
    0.6666666666666666
    >>> cover_single([{1, 2}, {3, 4}, {5, 6}], [{1, 2, 3}, {4, 5, 6}])
    0.6666666666666666
    >>> cover_single([{1, 2, 3, 4, 5, 6}], [{1}, {2}, {3}, {4, 5, 6}])
    0.3333333333333333
    """
    T = sum(map(len, Sprime))
    assert T == sum(map(len, S))
    C = 0
    for R in S:
        C += len(R) * max(overlap(R, Rprime) for Rprime in Sprime)
    C /= T
    return C


def covering(annotations, predictions, n_obs):
    """Compute the average segmentation covering against the human annotations.

    annotations : dict from user_id to iterable of CP locations
    predictions : iterable of predicted Cp locations
    n_obs : number of observations in the series

    >>> covering({1: [10, 20], 2: [10], 3: [0, 5]}, [10, 20], 45)
    0.7962962962962963
    >>> covering({1: [], 2: [10], 3: [40]}, [10], 45)
    0.7954144620811286
    >>> covering({1: [], 2: [10], 3: [40]}, [], 45)
    0.8189300411522634

    """
    Ak = {
        k + 1: partition_from_cps(annotations[uid], n_obs)
        for k, uid in enumerate(annotations)
    }
    pX = partition_from_cps(predictions, n_obs)

    Cs = [cover_single(pX, Ak[k]) for k in Ak]
    return sum(Cs) / len(Cs)