aboutsummaryrefslogtreecommitdiff
path: root/datasets/robocalls/get_robocalls.py
blob: 8d76e871632b9c764a97e100c25c8aac1d78af29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Collect the robocalls dataset

See the README file for more information.

Author: G.J.J. van den Burg
License: This file is part of TCPD, see the top-level LICENSE file.
Copyright: 2019, The Alan Turing Institute

"""


import argparse
import bs4
import hashlib
import json
import os
import requests

from functools import wraps

URL = "https://web.archive.org/web/20191027130452/https://robocallindex.com/history/time"

MD5_JSON = "f67ec0ccb50f2a835912e5c51932c083"

MONTHS = {
    "January": 1,
    "February": 2,
    "March": 3,
    "April": 4,
    "May": 5,
    "June": 6,
    "July": 7,
    "August": 8,
    "September": 9,
    "October": 10,
    "November": 11,
    "December": 12,
}


NAME_HTML = "robocalls.html"
NAME_JSON = "robocalls.json"


class ValidationError(Exception):
    def __init__(self, filename):
        self.message = (
            "Validating the file '%s' failed. \n"
            "Please raise an issue on the GitHub page for this project \n"
            "if the error persists." % filename
        )


def check_md5sum(filename, checksum):
    with open(filename, "rb") as fp:
        data = fp.read()
    h = hashlib.md5(data).hexdigest()
    return h == checksum


def validate(checksum):
    """Decorator that validates the target file."""

    def validate_decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            target = kwargs.get("target_path", None)
            if os.path.exists(target) and check_md5sum(target, checksum):
                return
            out = func(*args, **kwargs)
            if not os.path.exists(target):
                raise FileNotFoundError("Target file expected at: %s" % target)
            if not check_md5sum(target, checksum):
                raise ValidationError(target)
            return out

        return wrapper

    return validate_decorator


# We can't validate the HTML as the wayback machine inserts the retrieval time
# in the HTML, so the checksum is not constant.
def write_html(target_path=None):
    req = requests.get(URL)
    with open(target_path, "wb") as fp:
        fp.write(req.content)


@validate(MD5_JSON)
def write_json(html_path, target_path=None):
    with open(html_path, "rb") as fp:
        soup = bs4.BeautifulSoup(fp, "html.parser")

    items = []

    table = soup.find(id="robocallers-detail-table-1")
    for row in table.find_all(attrs={"class": "month-row"}):
        tds = row.find_all("td")
        month_year = tds[0].a.text
        amount = tds[1].text

        month, year = month_year.split(" ")
        value = int(amount.replace(",", ""))

        month_idx = MONTHS[month]

        items.append({"time": "%s-%02d" % (year, month_idx), "value": value})

    # During initial (manual) data collection it wasn't noticed that the first
    # observation is at April 2015, not May 2015. Technically, this means that
    # this series has a missing value at May 2015. However, because the
    # annotators have considered the series as a consecutive series without the
    # missing value, we do not add it in here. This way, the file that this
    # script creates corresponds to what the annotators and algorithms have
    # seen during the study.

    apr2015 = next((it for it in items if it["time"] == "2015-04"), None)
    apr2015["time"] = "2015-05"

    by_date = {it["time"]: it["value"] for it in items}

    # remove the observations that were not part of the original dataset
    del by_date["2019-09"]

    time = sorted(by_date.keys())
    values = [by_date[t] for t in time]

    series = [{"label": "V1", "type": "int", "raw": values}]

    data = {
        "name": "robocalls",
        "longname": "Robocalls",
        "n_obs": len(time),
        "n_dim": len(series),
        "time": {
            "type": "string",
            "format": "%Y-%m",
            "index": list(range(0, len(time))),
            "raw": time,
        },
        "series": series,
    }

    with open(target_path, "w") as fp:
        json.dump(data, fp, indent="\t")


def collect(output_dir="."):
    html_path = os.path.join(output_dir, NAME_HTML)
    json_path = os.path.join(output_dir, NAME_JSON)

    write_html(target_path=html_path)
    write_json(html_path, target_path=json_path)


def clean(output_dir="."):
    html_path = os.path.join(output_dir, NAME_HTML)
    json_path = os.path.join(output_dir, NAME_JSON)

    if os.path.exists(html_path):
        os.unlink(html_path)

    if os.path.exists(json_path):
        os.unlink(json_path)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-o", "--output-dir", help="output directory to use", default="."
    )
    parser.add_argument(
        "action",
        choices=["collect", "clean"],
        help="Action to perform",
        default="collect",
        nargs="?",
    )
    return parser.parse_args()


def main(output_dir="."):
    args = parse_args()
    if args.action == "collect":
        collect(output_dir=args.output_dir)
    elif args.action == "clean":
        clean(output_dir=args.output_dir)


if __name__ == "__main__":
    main()