aboutsummaryrefslogtreecommitdiff
path: root/syncrng.c
blob: deb9439906ce0e6c45a4fc798b31d9c231f5bedb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#ifdef TARGETPYTHON
#include "Python.h"
#endif

#ifndef TARGETPYTHON
#define STRICT_R_HEADERS
#include <stdio.h>
#include <stdlib.h>
#include <R.h>
#include <Rinternals.h>
#endif

/**
 * @brief Generate a single random number using the capped Tausworthe RNG
 *
 * @details
 * This generates random numbers according to the process described in [1]. As 
 * an additional step, the state variables are capped to 0x7FFFFFFF using a 
 * bitwise and. This is to overcome limitations of R. On return, the state 
 * variables are updated.
 *
 * [1]: @article{l1996maximally,
 *   title={Maximally equidistributed combined Tausworthe generators},
 *   author={L’ecuyer, Pierre},
 *   journal={Mathematics of Computation of the American Mathematical 
 *   Society},
 *   volume={65},
 *   number={213},
 *   pages={203--213},
 *   year={1996}
 *   }
 *
 * @param[in,out] state 	pointer to current state array
 *
 * @return a generated random number
 */
int lfsr113(int **state)
{
	unsigned long z1, z2, z3, z4, b;

	z1 = (*state)[0];
	z2 = (*state)[1];
	z3 = (*state)[2];
	z4 = (*state)[3];

	b = (((z1 << 6) ^ z1) >> 13);
	z1 = (((z1 & 4294967294) << 18) ^ b);

	b = (((z2 << 2) ^ z2) >> 27);
	z2 = (((z2 & 4294967288) << 2) ^ b);

	b = (((z3 << 13) ^ z3) >> 21);
	z3 = (((z3 & 4294967280) << 7) ^ b);

	b = (((z4 << 3) ^ z4) >> 12);
	z4 = (((z4 & 4294967168) << 13) ^ b);

	b = (z1 ^ z2 ^ z3 ^ z4);

	(*state)[0] = z1 & 0x7FFFFFFF;
	(*state)[1] = z2 & 0x7FFFFFFF;
	(*state)[2] = z3 & 0x7FFFFFFF;
	(*state)[3] = z4 & 0x7FFFFFFF;
	b = b & 0x7FFFFFFF;
	
	return(b);
}

/**
 * @brief Seed the Tausworthe RNG using a seed value
 *
 * @details
 * This function seeds the state array using a supplied seed value. As noted 
 * in [1] (see lfsr113()), the values of z1, z2, z3, and z4 should be larger 
 * than 1, 7, 15, and 127 respectively. Here too the state variables are 
 * capped at 0x7FFFFFF.
 *
 * @param[in] seed 	user supplied seed value for the RNG
 * @param[out] state  	state of the RNG
 */
void lfsr113_seed(unsigned long seed, int **state)
{
	unsigned long z1 = 2,
		      z2 = 8,
		      z3 = 16,
		      z4 = 128;

	z1 = (z1 * (seed + 1)) & 0x7FFFFFFF;
	z2 = (z2 * (seed + 1)) & 0x7FFFFFFF;
	z3 = (z3 * (seed + 1)) & 0x7FFFFFFF;
	z4 = (z4 * (seed + 1)) & 0x7FFFFFFF;

	if (*state == NULL) {
		(*state) = malloc(sizeof(int)*4);
	}

	(*state)[0] = (int) z1;
	(*state)[1] = (int) z2;
	(*state)[2] = (int) z3;
	(*state)[3] = (int) z4;
}

#ifdef TARGETPYTHON
/*
 *
 * Start of Python code
 *
 */

static PyObject *syncrng_seed(PyObject *self, PyObject *args)
{
	int seed, *state = NULL;

	if (!PyArg_ParseTuple(args, "i", &seed))
		return NULL;

	lfsr113_seed(seed, &state);
	PyObject *pystate = Py_BuildValue("[i, i, i, i]",
		       	state[0], state[1], state[2], state[3]);
	free(state);
	return pystate;
}

static PyObject *syncrng_rand(PyObject *self, PyObject *args)
{
	int i, value, numints, *localstate;

	PyObject *listObj;
	PyObject *intObj;

	if (!PyArg_ParseTuple(args, "O!", &PyList_Type, &listObj))
		return NULL;

	// we're just assuming you would never pass more than 4 values
	localstate = malloc(sizeof(int)*5);
	numints = PyList_Size(listObj);
	for (i=0; i<numints; i++) {
		intObj = PyList_GetItem(listObj, i);
		value = (int) PyLong_AsLong(intObj);
		localstate[i] = value;
	}

	int rand = lfsr113(&localstate);
	localstate[4] = rand;

	PyObject *pystate = Py_BuildValue("[i, i, i, i, i]",
		       	localstate[0], localstate[1], localstate[2],
			localstate[3], rand);
	free(localstate);
	return pystate;
}

static PyMethodDef SyncRNGMethods[] = {
	{"seed", syncrng_seed, METH_VARARGS,
		"Seed the RNG."},
	{"rand", syncrng_rand, METH_VARARGS,
		"Generate a single random integer using SyncRNG."},
	{NULL, NULL, 0, NULL}
};

PyMODINIT_FUNC initsyncrng(void)
{
	PyObject *m = Py_InitModule3("syncrng", SyncRNGMethods,
		       	"Python interface to SyncRNG");
	if (m == NULL)
		return;
}
#endif

#ifndef TARGETPYTHON
/*
 *
 * Start of R code
 *
 */
SEXP R_syncrng_seed(SEXP seed)
{
	int i, *pstate = NULL, *state = NULL;
	int *pseed = INTEGER(seed);

	SEXP Rstate = PROTECT(allocVector(INTSXP, 5));
	pstate = INTEGER(Rstate);

	lfsr113_seed(*pseed, &state);

	for (i=0; i<4; i++) {
		pstate[i] = state[i];
	}
	pstate[4] = -1;
	free(state);

	UNPROTECT(1);
	return Rstate;
}

SEXP R_syncrng_rand(SEXP state)
{
	int *localstate = malloc(sizeof(int)*4);
	int *pstate = INTEGER(state);
	int i;
	for (i=0; i<4; i++)
		localstate[i] = pstate[i];

	int rand = lfsr113(&localstate);
	
	SEXP Rstate = PROTECT(allocVector(INTSXP, 5));
	pstate = INTEGER(Rstate);

	for (i=0; i<4; i++)
		pstate[i] = localstate[i];
	pstate[4] = rand;
	UNPROTECT(1);

	free(localstate);

	return Rstate;
}
/*
 *
 * End of R code
 *
 */
#endif