1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
# SyncRNG
[](https://github.com/GjjvdBurg/SyncRNG/actions)
[](https://cran.r-project.org/web/packages/SyncRNG/index.html)
[](https://cran.r-project.org/web/packages/SyncRNG/index.html)
[](https://pypi.org/project/SyncRNG)
[](https://pepy.tech/project/SyncRNG)
*Generate the same random numbers in R and Python.*
**Useful Links:**
- [SyncRNG on GitHub](https://github.com/GjjvdBurg/SyncRNG)
- [SyncRNG on PyPI](https://pypi.org/project/SyncRNG/)
- [SyncRNG on CRAN](https://cran.r-project.org/web/packages/SyncRNG/index.html)
- [Blog post on SyncRNG](https://gertjanvandenburg.com/blog/syncrng/)
*Contents:* <a href="#introduction"><b>Introduction</b></a> |
<a href="#installation"><b>Installation</b></a> |
<a href="#usage"><b>Usage</b></a> |
<a href="#functionality">Functionality</a> |
<a href="#r-user-defined-rng">R: User defined RNG</a> |
<a href="#examples"><b>Examples</b></a> |
<a href="#sampling-without-replacement">Sampling without replacement</a> |
<a href="#sampling-with-replacement">Sampling with replacement</a> |
<a href="#generating-normally-distributed-values">Generating Normally Distributed Values</a> |
<a href="#creating-the-same-traintest-splits">Creating the same train/test splits</a> |
<a href="#notes"><b>Notes</b></a>
## Introduction
I created this package because I needed to have the same random numbers in
both R and Python programs. Although both languages implement a
Mersenne-Twister random number generator (RNG), the implementations are so
different that it is not possible to get the same random numbers, even with
the same seed.
SyncRNG is a "Tausworthe" RNG implemented in C and linked to both R and
Python. Since both use the same underlying C code, the random numbers will be
the same in both languages when the same seed is used. A [Tausworthe
generator](https://en.wikipedia.org/wiki/List_of_random_number_generators#Pseudorandom_number_generators_(PRNGs))
is based on a linear feedback shift register and relatively easy to implement.
You can read more about my motivations for creating this
[here](https://gertjanvandenburg.com/blog/syncrng/).
If you use SyncRNG in your work, please consider citing it. Here is a BibTeX
entry you can use:
```bibtex
@misc{vandenburg2015syncrng,
author={{Van den Burg}, G. J. J.},
title={{SyncRNG}: Synchronised Random Numbers in {R} and {Python}},
url={https://github.com/GjjvdBurg/SyncRNG},
year={2015},
note={Version 1.3}
}
```
## Installation
Installing the R package can be done through CRAN:
```
> install.packages('SyncRNG')
```
The Python package can be installed using pip:
```
$ pip install syncrng
```
## Usage
After installing the package, you can use the basic ``SyncRNG`` random number
generator. In Python you can do:
```python
>>> from SyncRNG import SyncRNG
>>> s = SyncRNG(seed=123456)
>>> for i in range(10):
>>> print(s.randi())
```
And in R you can use:
```r
> library(SyncRNG)
> s <- SyncRNG(seed=123456)
> for (i in 1:10) {
> cat(s$randi(), '\n')
> }
```
You'll notice that the random numbers are indeed the same.
### Functionality
In both R and Python the following methods are available for the ``SyncRNG``
class:
1. ``randi()``: generate a random integer on the interval [0, 2^32).
2. ``rand()``: generate a random floating point number on the interval [0.0,
1.0)
3. ``randbelow(n)``: generate a random integer below a given integer ``n``.
4. ``shuffle(x)``: generate a permutation of a given list of numbers ``x``.
Functionality is deliberately kept minimal to make maintaining this library
easier. It is straightforward to build more advanced applications on the
existing methods, as the examples below show.
### R: User defined RNG
R allows the user to define a custom random number generator, which is then
used for the common ``runif`` function in R. This has also been implemented in
SyncRNG as of version 1.3.0. To enable this, run:
```r
> library(SyncRNG)
> set.seed(123456, 'user', 'user')
> runif(10)
```
These numbers are between [0, 1) and multiplying by ``2**32 - 1`` gives the
same results as above. Note that while this works for low-level random number
generation using ``runif``, it is not guaranteed that higher-level functions
that build on this (such as ``rnorm`` and ``sample``) translate easily to
similar functions in Python. This has likely to do with R's internal
implementation for these functions. Using random number primitives from
SyncRNG directly is therefore generally more reliable. See the examples below
for sampling and generating normally distributed values with SyncRNG.
## Examples
This section contains several examples of functionality that can easily be
built on top of the primitives that SyncRNG provides.
### Sampling without replacement
Sampling without replacement can be done by leveraging the builtin ``shuffle``
method of SyncRNG:
R:
```r
> library(SyncRNG)
> v <- 1:10
> s <- SyncRNG(seed=42)
> # Sample 5 values without replacement
> s$shuffle(v)[1:5]
[1] 6 9 2 4 5
```
Python:
```python
>>> from SyncRNG import SyncRNG
>>> v = list(range(1, 11))
>>> s = SyncRNG(seed=42)
>>> # Sample 5 values without replacement
>>> s.shuffle(v)[:5]
[6, 9, 2, 4, 5]
```
### Sampling with replacement
Sampling with replacement simply means generating random array indices. Note
that these values are not (necessarily) the same as what is returned from R's
``sample`` function, even if we specify SyncRNG as the user-defined RNG (see
above).
R:
```r
> library(SyncRNG)
> v <- 1:10
> s <- SyncRNG(seed=42)
> u <- NULL
> # Sample 15 values with replacement
> for (k in 1:15) {
+ idx <- s$randi() %% length(v) + 1
+ u <- c(u, v[idx])
+ }
> u
[1] 10 1 1 9 3 10 10 10 9 4 1 9 6 3 6
```
Python:
```python
>>> from SyncRNG import SyncRNG
>>> v = list(range(1, 11))
>>> s = SyncRNG(seed=42)
>>> u = []
>>> for k in range(15):
... idx = s.randi() % len(v)
... u.append(v[idx])
...
>>> u
[10, 1, 1, 9, 3, 10, 10, 10, 9, 4, 1, 9, 6, 3, 6]
```
### Generating Normally Distributed Values
It is also straightforward to implement a [Box-Muller
transform](https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform) to
generate normally distributed samples.
R:
```r
library(SyncRNG)
# Generate n numbers from N(mu, sigma^2)
syncrng.box.muller <- function(mu, sigma, n, seed=0, rng=NULL)
{
if (is.null(rng)) {
rng <- SyncRNG(seed=seed)
}
two.pi <- 2 * pi
ngen <- ceiling(n / 2)
out <- replicate(2 * ngen, 0.0)
for (i in 1:ngen) {
u1 <- 0.0
u2 <- 0.0
while (u1 == 0) { u1 <- rng$rand(); }
while (u2 == 0) { u2 <- rng$rand(); }
mag <- sigma * sqrt(-2.0 * log(u1))
z0 <- mag * cos(two.pi * u2) + mu
z1 <- mag * sin(two.pi * u2) + mu
out[2*i - 1] = z0;
out[2*i] = z1;
}
return(out[1:n]);
}
> syncrng.box.muller(1.0, 3.0, 11, seed=123)
[1] 9.6062905 1.4132851 1.0223211 1.7554504 13.5366881 1.0793818
[7] 2.5734537 1.1689116 0.5588834 -6.1701509 3.2221119
```
Python:
```python
import math
from SyncRNG import SyncRNG
def syncrng_box_muller(mu, sigma, n, seed=0, rng=None):
"""Generate n numbers from N(mu, sigma^2)"""
rng = SyncRNG(seed=seed) if rng is None else rng
two_pi = 2 * math.pi
ngen = math.ceil(n / 2)
out = [0.0] * 2 * ngen
for i in range(ngen):
u1 = 0.0
u2 = 0.0
while u1 == 0:
u1 = rng.rand()
while u2 == 0:
u2 = rng.rand()
mag = sigma * math.sqrt(-2.0 * math.log(u1))
z0 = mag * math.cos(two_pi * u2) + mu
z1 = mag * math.sin(two_pi * u2) + mu
out[2*i] = z0
out[2*i + 1] = z1
return out[:n]
>>> syncrng_box_muller(1.0, 3.0, 11, seed=123)
[9.60629048280169, 1.4132850614143178, 1.0223211130311138, 1.7554504380249232,
13.536688052073458, 1.0793818230927306, 2.5734537321359925,
1.1689116061110083, 0.5588834007200677, -6.1701508943037195,
3.2221118937024342]
```
### Creating the same train/test splits
A common use case for this package is to create the same train and test splits
in R and Python. Below are some code examples that illustrate how to do this.
Both assume you have a matrix ``X`` with `100` rows.
R:
```r
# This function creates a list with train and test indices for each fold
k.fold <- function(n, K, shuffle=TRUE, seed=0)
{
idxs <- c(1:n)
if (shuffle) {
rng <- SyncRNG(seed=seed)
idxs <- rng$shuffle(idxs)
}
# Determine fold sizes
fsizes <- c(1:K)*0 + floor(n / K)
mod <- n %% K
if (mod > 0)
fsizes[1:mod] <- fsizes[1:mod] + 1
out <- list(n=n, num.folds=K)
current <- 1
for (f in 1:K) {
fs <- fsizes[f]
startidx <- current
stopidx <- current + fs - 1
test.idx <- idxs[startidx:stopidx]
train.idx <- idxs[!(idxs %in% test.idx)]
out$testidxs[[f]] <- test.idx
out$trainidxs[[f]] <- train.idx
current <- stopidx
}
return(out)
}
# Which you can use as follows
folds <- k.fold(nrow(X), K=10, shuffle=T, seed=123)
for (f in 1:folds$num.folds) {
X.train <- X[folds$trainidx[[f]], ]
X.test <- X[folds$testidx[[f]], ]
# continue using X.train and X.test here
}
```
Python:
```python
def k_fold(n, K, shuffle=True, seed=0):
"""Generator for train and test indices"""
idxs = list(range(n))
if shuffle:
rng = SyncRNG(seed=seed)
idxs = rng.shuffle(idxs)
fsizes = [n // K]*K
mod = n % K
if mod > 0:
fsizes[:mod] = [x+1 for x in fsizes[:mod]]
current = 0
for fs in fsizes:
startidx = current
stopidx = current + fs
test_idx = idxs[startidx:stopidx]
train_idx = [x for x in idxs if not x in test_idx]
yield train_idx, test_idx
current = stopidx
# Which you can use as follows
kf = k_fold(X.shape[0], K=3, shuffle=True, seed=123)
for trainidx, testidx in kf:
X_train = X[trainidx, :]
X_test = X[testidx, :]
# continue using X_train and X_test here
```
## Notes
The random numbers are uniformly distributed on ``[0, 2^32 - 1]``. No
attention has been paid to thread-safety and you shouldn't use this random
number generator for cryptographic applications.
If you have questions, comments, or suggestions about SyncRNG or you encounter
a problem, please open an issue [on
GitHub](https://github.com/GjjvdBurg/SyncRNG/). Please don't hesitate to
contact me, you're helping to make this project better for everyone! If you
prefer not to use Github you can email me at ``gertjanvandenburg at gmail dot
com``.
|