aboutsummaryrefslogtreecommitdiff
path: root/R/src/syncrng.c
blob: 8318dd62d921b83ccba6bce523deb82b2bce3047 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#define STRICT_R_HEADERS
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <R.h>
#include <Rinternals.h>
#include <R_ext/Random.h>
#include <R_ext/Rdynload.h>

/**
 * @brief Generate a single random number using the capped Tausworthe RNG
 *
 * @details
 * This generates random numbers according to the process described in [1]. As 
 * an additional step, the resulting random number is capped to 0xFFFFFFFF 
 * using a bitwise and. This is done to yield the range [0, 2^32-1]. On 
 * return, the state variables are updated.
 *
 * [1]: @article{l1996maximally,
 *   title={Maximally equidistributed combined Tausworthe generators},
 *   author={L’ecuyer, Pierre},
 *   journal={Mathematics of Computation of the American Mathematical 
 *   Society},
 *   volume={65},
 *   number={213},
 *   pages={203--213},
 *   year={1996}
 *   }
 *
 * @param[in,out] state 	pointer to current state array
 *
 * @return a generated random number
 */
uint32_t lfsr113(uint64_t **state)
{
	// NOTE: This function *must* be the same as in the Python library
	uint64_t z1, z2, z3, z4;
	uint64_t b;

	z1 = (*state)[0];
	z2 = (*state)[1];
	z3 = (*state)[2];
	z4 = (*state)[3];

	b = (((z1 << 6) ^ z1) >> 13);
	z1 = (((z1 & 4294967294) << 18) ^ b);

	b = (((z2 << 2) ^ z2) >> 27);
	z2 = (((z2 & 4294967288) << 2) ^ b);

	b = (((z3 << 13) ^ z3) >> 21);
	z3 = (((z3 & 4294967280) << 7) ^ b);

	b = (((z4 << 3) ^ z4) >> 12);
	z4 = (((z4 & 4294967168) << 13) ^ b);

	b = (z1 ^ z2 ^ z3 ^ z4);

	(*state)[0] = z1;
	(*state)[1] = z2;
	(*state)[2] = z3;
	(*state)[3] = z4;

	b = b & 0xFFFFFFFF;

	return((uint32_t) b);
}

/**
 * @brief Seed the Tausworthe RNG using a seed value
 *
 * @details
 * This function seeds the state array using a supplied seed value. As noted 
 * in [1] (see lfsr113()), the values of z1, z2, z3, and z4 should be larger 
 * than 1, 7, 15, and 127 respectively.
 *
 * @param[in] seed 	user supplied seed value for the RNG
 * @param[out] state  	state of the RNG
 */
void lfsr113_seed(uint32_t seed, uint64_t **state)
{
	// NOTE: This function *must* be the same as in the Python library
	uint64_t z1 = 2,
		 z2 = 8,
		 z3 = 16,
		 z4 = 128;

	z1 = (z1 * (seed + 1));
	z2 = (z2 * (seed + 1));
	z3 = (z3 * (seed + 1));
	z4 = (z4 * (seed + 1));

	z1 = (z1 > 1) ? z1 : z1 + 1;
	z2 = (z2 > 7) ? z2 : z2 + 7;
	z3 = (z3 > 15) ? z3 : z3 + 15;
	z4 = (z4 > 127) ? z4 : z4 + 127;

	if (*state == NULL) {
		(*state) = malloc(sizeof(uint64_t)*4);
	}

	(*state)[0] = z1;
	(*state)[1] = z2;
	(*state)[2] = z3;
	(*state)[3] = z4;
}

/*
 *
 * Start of R code
 *
 */

SEXP R_syncrng_seed(SEXP seed);
SEXP R_syncrng_rand(SEXP state);

R_CallMethodDef callMethods[] = {
	{"R_syncrng_seed", (DL_FUNC) &R_syncrng_seed, 1},
	{"R_syncrng_rand", (DL_FUNC) &R_syncrng_rand, 1},
	{NULL, NULL, 0}
};
R_CMethodDef cMethods[] = {
	{NULL, NULL, 0}
};

void R_init_myLib(DllInfo *info)
{
	R_registerRoutines(info, cMethods, callMethods, NULL, NULL);
	R_useDynamicSymbols(info, TRUE);
}

// Set the seed for the generator from the reference class
SEXP R_syncrng_seed(SEXP seed)
{
	int i;
	double *pseed = REAL(seed),
	       *pstate = NULL;
	uint32_t useed = (uint32_t) *pseed;
	uint64_t *state = NULL;

	lfsr113_seed(useed, &state);

	SEXP Rstate = PROTECT(allocVector(REALSXP, 5));
	pstate = REAL(Rstate);
	for (i=0; i<4; i++) {
		pstate[i] = (double) state[i];
	}
	pstate[4] = -1.0;
	free(state);

	UNPROTECT(1);
	return Rstate;
}

// get a random number from the reference class
SEXP R_syncrng_rand(SEXP state)
{
	uint64_t *localstate = malloc(sizeof(uint64_t)*4);
	double *pstate = REAL(state);
	int i;
	for (i=0; i<4; i++) {
		localstate[i] = (uint64_t) pstate[i];
	}

	uint32_t rand = lfsr113(&localstate);

	SEXP Rstate = PROTECT(allocVector(REALSXP, 5));
	pstate = REAL(Rstate);

	for (i=0; i<4; i++) {
		pstate[i] = (double) localstate[i];
	}
	pstate[4] = (double) rand;
	UNPROTECT(1);

	free(localstate);

	return Rstate;
}

/*
 * The following code is used to make SyncRNG a real "user-defined" RNG 
 * following .Random.user documentation.
 *
 */
static uint32_t global_R_seed;
static int global_R_nseed = 1;
static double global_R_result_uniform;
static double global_R_result_normal;
static uint64_t *global_R_state = NULL;

double *user_unif_rand()
{
	if (global_R_state == NULL) {
		// if it's not seeded yet we seed it with 0
		global_R_seed = 0;
		lfsr113_seed(global_R_seed, &global_R_state);
	}

	uint32_t rand = lfsr113(&global_R_state);
	global_R_result_uniform = rand * 2.3283064365387e-10;
	return &global_R_result_uniform;
}

// see: https://stackoverflow.com/q/47824450/1154005
Int32 _unscramble(Int32 scram)
{
	int j;
	for (j=0; j<50; j++) {
		scram = ((scram - 1) * 2783094533);
	}
	return scram;
}

// note that Int32 is "unsigned int" which is not necessarily 32 bit
void user_unif_init(Int32 seed_in)
{
	global_R_seed = seed_in;
	uint32_t useed = _unscramble(seed_in);

	// destroy the previous state, we're reseeding the RNG
	if (global_R_state != NULL) {
		free(global_R_state);
		global_R_state = NULL;
	}
	lfsr113_seed(useed, &global_R_state);
}

int *user_unif_nseed()
{
	return &global_R_nseed;
}

int *user_unif_seedloc()
{
	return (int *) &global_R_seed;
}

double *user_norm_rand()
{
	double u, v, z, x;
	do {
		u = *user_unif_rand();
		v = 0.857764 * (2. * (*user_unif_rand()) - 1);
		x = v/u;
		z = 0.25 * x * x;
		if (z < 1. - u)
			break;
		if (z > 0.259/u + 0.35)
			continue;
	} while (z > -log(u));
	global_R_result_normal = x;
	return &global_R_result_normal;
}

/*
 *
 * End of R code
 *
 */