% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/fit.sparsestep.R, R/sparsestep.R \docType{package} \name{sparsestep} \alias{sparsestep} \alias{sparsestep-package} \title{Fits the SparseStep model} \usage{ sparsestep(x, y, lambda = 1, gamma0 = 1e+06, gammastop = 1e-08, IMsteps = 2, gammastep = 2, normalize = TRUE, intercept = TRUE, force.zero = TRUE, threshold = 1e-07, XX = NULL, Xy = NULL, use.XX = TRUE, use.Xy = TRUE) } \arguments{ \item{x}{matrix of predictors} \item{y}{response} \item{lambda}{regularization parameter} \item{gamma0}{starting value of the gamma parameter} \item{gammastop}{stopping value of the gamma parameter} \item{IMsteps}{number of steps of the majorization algorithm to perform for each value of gamma} \item{gammastep}{factor to decrease gamma with at each step} \item{normalize}{if TRUE, each variable is standardized to have unit L2 norm, otherwise it is left alone.} \item{intercept}{if TRUE, an intercept is included in the model (and not penalized), otherwise no intercept is included} \item{force.zero}{if TRUE, absolute coefficients smaller than the provided threshold value are set to absolute zero as a post-processing step, otherwise no thresholding is performed} \item{threshold}{threshold value to use for setting coefficients to absolute zero} \item{XX}{The X'X matrix; useful for repeated runs where X'X stays the same} \item{Xy}{The X'y matrix; useful for repeated runs where X'y stays the same} \item{use.XX}{whether or not to compute X'X and return it} \item{use.Xy}{whether or not to compute X'y and return it} } \value{ A "sparsestep" object is returned, for which predict, coef, methods exist. } \description{ Fits the SparseStep model for a single value of the regularization parameter. sparsestep. } \examples{ data(diabetes) attach(diabetes) object <- sparsestep(x, y) plot(object) detach(diabetes) }