% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sparsestep-package.R \docType{package} \name{sparsestep-package} \alias{sparsestep-package} \title{SparseStep: Approximating the Counting Norm for Sparse Regularization} \description{ In the SparseStep regression model the ordinary least-squares problem is augmented with an approximation of the exact \eqn{\ell_0}{l[0]} pseudonorm. This approximation is made increasingly more accurate in the SparseStep algorithm, resulting in a sparse solution to the regression problem. See the references for more information. } \section{SparseStep functions}{ The main SparseStep functions are: \describe{ \item{\code{\link{sparsestep}}}{Fit a SparseStep model for a given range of \eqn{\lambda} values} \item{\code{\link{path.sparsestep}}}{Fit the SparseStep model along a path of \eqn{\lambda} values which are generated such that a model is created at each possible level of sparsity, or until a given recursion depth is reached.} } Other available functions are: \describe{ \item{\code{\link{plot}}}{Plot the coefficient path of the SparseStep model.} \item{\code{\link{predict}}}{Predict the outcome of the linear model using SparseStep} \item{\code{\link{coef}}}{Get the coefficients from the SparseStep model} \item{\code{\link{print}}}{Print a short description of the SparseStep model} } } \examples{ x <- matrix(rnorm(100*20), 100, 20) y <- rnorm(100) fit <- sparsestep(x, y) plot(fit) fits <- path.sparsestep(x, y) plot(fits) x2 <- matrix(rnorm(50*20), 50, 20) y2 <- predict(fits, x2) } \references{ Van den Burg, G.J.J., Groenen, P.J.F. and Alfons, A. (2017). \emph{SparseStep: Approximating the Counting Norm for Sparse Regularization}, arXiv preprint arXiv:1701.06967 [stat.ME]. URL \url{https://arxiv.org/abs/1701.06967}. } \author{ Gerrit J.J. van den Burg, Patrick J.F. Groenen, Andreas Alfons\cr Maintainer: Gerrit J.J. van den Burg }