% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gensvm.refit.R \name{gensvm.refit} \alias{gensvm.refit} \title{Train an already fitted model on new data} \usage{ gensvm.refit(fit, X, y, p = NULL, lambda = NULL, kappa = NULL, epsilon = NULL, weights = NULL, kernel = NULL, gamma = NULL, coef = NULL, degree = NULL, kernel.eigen.cutoff = NULL, max.iter = NULL, verbose = NULL, random.seed = NULL) } \arguments{ \item{fit}{Fitted \code{gensvm} object} \item{X}{Data matrix of the new data} \item{y}{Label vector of the new data} \item{verbose}{Turn on verbose output and fit progress. If NULL (the default) the value from the fitted model is chosen.} } \value{ a new fitted \code{gensvm} model } \examples{ x <- iris[, -5] y <- iris[, 5] # fit a standard model and refit with slightly different parameters fit <- gensvm(x, y) fit2 <- gensvm.refit(fit, x, y, epsilon=1e-8) # refit a model returned by a grid search grid <- gensvm.grid(x, y) fit <- gensvm.refit(fit, x, y, epsilon=1e-8) # refit on different data idx <- runif(nrow(x)) > 0.5 x1 <- x[idx, ] x2 <- x[!idx, ] y1 <- y[idx] y2 <- y[!idx] fit1 <- gensvm(x1, y1) fit2 <- gensvm.refit(fit1, x2, y2) } \references{ Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized Multiclass Support Vector Machine}, Journal of Machine Learning Research, 17(225):1--42. URL \url{http://jmlr.org/papers/v17/14-526.html}. } \seealso{ \code{\link{gensvm}}, \code{\link{gensvm-package}} } \author{ Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr Maintainer: Gerrit J.J. van den Burg }