#' @title Plot the simplex space of the fitted GenSVM model #' #' @description This function creates a plot of the simplex space for a fitted #' GenSVM model and the given data set, as long as the dataset consists of only #' 3 classes. For more than 3 classes, the simplex space is too high #' dimensional to easily visualize. #' #' @param fit A fitted \code{gensvm} object #' @param x the dataset to plot #' @param y.true the true data labels. If provided the objects will be colored #' using the true labels instead of the predicted labels. This makes it easy to #' identify misclassified objects. #' @param with.margins plot the margins #' @param with.shading show shaded areas for the class regions #' @param with.legend show the legend for the class labels #' @param center.plot ensure that the boundaries and margins are always visible #' in the plot #' @param xlim allows the user to force certain plot limits. If set, these #' bounds will be used for the horizontal axis. #' @param ylim allows the user to force certain plot limits. If set, these #' bounds will be used for the vertical axis and the value of center.plot will #' be ignored #' @param ... further arguments are passed to the builtin plot() function #' #' @return returns the object passed as input #' #' @author #' Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr #' Maintainer: Gerrit J.J. van den Burg #' #' @references #' Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized #' Multiclass Support Vector Machine}, Journal of Machine Learning Research, #' 17(225):1--42. URL \url{http://jmlr.org/papers/v17/14-526.html}. #' #' @seealso #' \code{\link{plot.gensvm.grid}}, \code{\link{predict.gensvm}}, #' \code{\link{gensvm}}, \code{\link{gensvm-package}} #' #' @method plot gensvm #' @export #' #' @examples #' x <- iris[, -5] #' y <- iris[, 5] #' #' # train the model #' fit <- gensvm(x, y) #' #' # plot the simplex space #' plot(fit, x) #' #' # plot and use the true colors (easier to spot misclassified samples) #' plot(fit, x, y.true=y) #' #' # plot only misclassified samples #' x.mis <- x[predict(fit, x) != y, ] #' y.mis.true <- y[predict(fit, x) != y] #' plot(fit, x.mis) #' plot(fit, x.mis, y.true=y.mis.true) #' plot.gensvm <- function(fit, x, y.true=NULL, with.margins=TRUE, with.shading=TRUE, with.legend=TRUE, center.plot=TRUE, xlim=NULL, ylim=NULL, ...) { if (fit$n.classes != 3) { cat("Error: Can only plot with 3 classes\n") return } # Sanity check if (ncol(x) != fit$n.features) { cat("Error: Number of features of fitted model and testing data disagree.\n") return } x.train <- fit$X.train if (fit$kernel != 'linear' && is.null(x.train)) { cat("Error: The training data is needed to plot data for ", "nonlinear GenSVM. This data is not present in the fitted ", "model!\n", sep="") return } if (!is.null(x.train) && ncol(x.train) != fit$n.features) { cat("Error: Number of features of fitted model and training data ", "disagree.\n", sep="") return } x <- as.matrix(x) if (fit$kernel == 'linear') { V <- coef(fit) Z <- cbind(matrix(1, dim(x)[1], 1), x) S <- Z %*% V y.pred.orig <- predict(fit, x) } else { kernels <- c("linear", "poly", "rbf", "sigmoid") kernel.idx <- which(kernels == fit$kernel) - 1 plotdata <- .Call("R_gensvm_plotdata_kernels", as.matrix(x), as.matrix(x.train), as.matrix(fit$V), as.integer(nrow(fit$V)), as.integer(ncol(fit$V)), as.integer(nrow(x.train)), as.integer(nrow(x)), as.integer(fit$n.features), as.integer(fit$n.classes), as.integer(kernel.idx), fit$gamma, fit$coef, fit$degree, fit$kernel.eigen.cutoff ) S <- plotdata$ZV y.pred.orig <- plotdata$y.pred } classes <- fit$classes if (is.factor(y.pred.orig)) { y.pred <- match(y.pred.orig, classes) } else { y.pred <- y.pred.orig } # Define some colors point.blue <- rgb(31, 119, 180, maxColorValue=255) point.orange <- rgb(255, 127, 14, maxColorValue=255) point.green <- rgb(44, 160, 44, maxColorValue=255) fill.blue <- rgb(31, 119, 180, 51, maxColorValue=255) fill.orange <- rgb(255, 127, 14, 51, maxColorValue=255) fill.green <- rgb(44, 160, 44, 51, maxColorValue=255) colors <- as.matrix(c(point.green, point.blue, point.orange)) markers <- as.matrix(c(15, 16, 17)) if (is.null(y.true)) { col.vector <- colors[y.pred] mark.vector <- markers[y.pred] } else { col.vector <- colors[y.true] mark.vector <- markers[y.true] } par(pty="s") if (center.plot) { if (is.null(xlim)) xlim <- c(min(min(S[, 1]), -1.2), max(max(S[, 1]), 1.2)) if (is.null(ylim)) ylim <- c(min(min(S[, 2]), -0.75), max(max(S[, 2]), 1.2)) plot(S[, 1], S[, 2], col=col.vector, pch=mark.vector, ylab='', xlab='', asp=1, xlim=xlim, ylim=ylim, ...) } else { plot(S[, 1], S[, 2], col=col.vector, pch=mark.vector, ylab='', xlab='', asp=1, xlim=xlim, ylim=ylim, ...) } limits <- par("usr") xmin <- limits[1] xmax <- limits[2] ymin <- limits[3] ymax <- limits[4] # draw the fixed boundaries segments(0, 0, 0, ymin) segments(0, 0, xmax, xmax/sqrt(3)) segments(xmin, abs(xmin)/sqrt(3), 0, 0) if (with.margins) { # margin from left below decision boundary to center segments(xmin, -xmin/sqrt(3) - sqrt(4/3), -1, -1/sqrt(3), lty=2) # margin from left center to down segments(-1, -1/sqrt(3), -1, ymin, lty=2) # margin from right center to middle segments(1, -1/sqrt(3), 1, ymin, lty=2) # margin from right center to right boundary segments(1, -1/sqrt(3), xmax, xmax/sqrt(3) - sqrt(4/3), lty=2) # margin from center to top left segments(xmin, -xmin/sqrt(3) + sqrt(4/3), 0, sqrt(4/3), lty=2) # margin from center to top right segments(0, sqrt(4/3), xmax, xmax/sqrt(3) + sqrt(4/3), lty=2) } if (with.shading) { # bottom left polygon(c(xmin, -1, -1, xmin), c(ymin, ymin, -1/sqrt(3), -xmin/sqrt(3) - sqrt(4/3)), col=fill.green, border=NA) # bottom right polygon(c(1, xmax, xmax, 1), c(ymin, ymin, xmax/sqrt(3) - sqrt(4/3), -1/sqrt(3)), col=fill.blue, border=NA) # top polygon(c(xmin, 0, xmax, xmax, xmin), c(-xmin/sqrt(3) + sqrt(4/3), sqrt(4/3), xmax/sqrt(3) + sqrt(4/3), ymax, ymax), col=fill.orange, border=NA) } if (with.legend) { offset <- abs(xmax - xmin) * 0.05 legend(xmax + offset, ymax, classes, col=colors, pch=markers, xpd=T) } invisible(fit) }