#' @title Fit the GenSVM model #' #' @description Fits the Generalized Multiclass Support Vector Machine model #' with the given parameters. See the package documentation #' (\code{\link{gensvm-package}}) for more general information about GenSVM. #' #' @param X data matrix with the predictors #' @param y class labels #' @param p parameter for the L_p norm of the loss function (1.0 <= p <= 2.0) #' @param lambda regularization parameter for the loss function (lambda > 0) #' @param kappa parameter for the hinge function in the loss function (kappa > #' -1.0) #' @param weights type of instance weights to use. Options are 'unit' for unit #' weights and 'group' for group size correction weight (eq. 4 in the paper). #' @param kernel the kernel type to use in the classifier. It must be one of #' 'linear', 'poly', 'rbf', or 'sigmoid'. See the section "Kernels in GenSVM" #' in \code{\link{gensvm-package}} for more info. #' @param gamma kernel parameter for the rbf, polynomial, and sigmoid kernel. #' If gamma is 'auto', then 1/n_features will be used. #' @param coef parameter for the polynomial and sigmoid kernel. #' @param degree parameter for the polynomial kernel #' @param kernel.eigen.cutoff Cutoff point for the reduced eigendecomposition #' used with kernel-GenSVM. Eigenvectors for which the ratio between their #' corresponding eigenvalue and the largest eigenvalue is smaller than this #' cutoff value will be dropped. #' @param verbose Turn on verbose output and fit progress #' @param random.seed Seed for the random number generator (useful for #' reproducible output) #' @param max.iter Maximum number of iterations of the optimization algorithm. #' @param seed.V Matrix to warm-start the optimization algorithm. This is #' typically the output of \code{coef(fit)}. Note that this function will #' silently drop seed.V if the dimensions don't match the provided data. #' #' @return A "gensvm" S3 object is returned for which the print, predict, coef, #' and plot methods are available. It has the following items: #' \item{call}{The call that was used to construct the model.} #' \item{p}{The value of the lp norm in the loss function} #' \item{lambda}{The regularization parameter used in the model.} #' \item{kappa}{The hinge function parameter used.} #' \item{epsilon}{The stopping criterion used.} #' \item{weights}{The instance weights type used.} #' \item{kernel}{The kernel function used.} #' \item{gamma}{The value of the gamma parameter of the kernel, if applicable} #' \item{coef}{The value of the coef parameter of the kernel, if applicable} #' \item{degree}{The degree of the kernel, if applicable} #' \item{kernel.eigen.cutoff}{The cutoff value of the reduced #' eigendecomposition of the kernel matrix.} #' \item{verbose}{Whether or not the model was fitted with progress output} #' \item{random.seed}{The random seed used to seed the model.} #' \item{max.iter}{Maximum number of iterations of the algorithm.} #' \item{n.objects}{Number of objects in the dataset} #' \item{n.features}{Number of features in the dataset} #' \item{n.classes}{Number of classes in the dataset} #' \item{classes}{Array with the actual class labels} #' \item{V}{Coefficient matrix} #' \item{n.iter}{Number of iterations performed in training} #' \item{n.support}{Number of support vectors in the final model} #' \item{training.time}{Total training time} #' \item{X.train}{When training with nonlinear kernels, the training data is #' needed to perform prediction. For these kernels it is therefore stored in #' the fitted model.} #' #' @note #' This function returns partial results when the computation is interrupted by #' the user. #' #' @author #' Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr #' Maintainer: Gerrit J.J. van den Burg #' #' @references #' Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized #' Multiclass Support Vector Machine}, Journal of Machine Learning Research, #' 17(225):1--42. URL \url{http://jmlr.org/papers/v17/14-526.html}. #' #' @seealso #' \code{\link{coef}}, \code{\link{print}}, \code{\link{predict}}, #' \code{\link{plot}}, \code{\link{gensvm.grid}}, \code{\link{gensvm-package}} #' #' @export #' @useDynLib gensvm_wrapper, .registration = TRUE #' #' @examples #' x <- iris[, -5] #' y <- iris[, 5] #' #' # fit using the default parameters #' fit <- gensvm(x, y) #' #' # fit and show progress #' fit <- gensvm(x, y, verbose=T) #' #' # fit with some changed parameters #' fit <- gensvm(x, y, lambda=1e-8) #' #' # Early stopping defined through epsilon #' fit <- gensvm(x, y, epsilon=1e-3) #' #' # Early stopping defined through max.iter #' fit <- gensvm(x, y, max.iter=1000) #' #' # Nonlinear training #' fit <- gensvm(x, y, kernel='rbf') #' fit <- gensvm(x, y, kernel='poly', degree=2, gamma=1.0) #' #' # Setting the random seed and comparing results #' fit <- gensvm(x, y, random.seed=123) #' fit2 <- gensvm(x, y, random.seed=123) #' all.equal(coef(fit), coef(fit2)) #' #' gensvm <- function(X, y, p=1.0, lambda=1e-8, kappa=0.0, epsilon=1e-6, weights='unit', kernel='linear', gamma='auto', coef=1.0, degree=2.0, kernel.eigen.cutoff=1e-8, verbose=FALSE, random.seed=NULL, max.iter=1e8, seed.V=NULL) { call <- match.call() # Generate the random.seed value in R if it is NULL. This way users can # reproduce the run because it is returned in the output object. if (is.null(random.seed)) random.seed <- runif(1) * (2**31 - 1) n.objects <- nrow(X) n.features <- ncol(X) n.classes <- length(unique(y)) # Convert labels to integers classes <- sort(unique(y)) y.clean <- match(y, classes) # Convert gamma if it is 'auto' if (gamma == 'auto') gamma <- 1.0/n.features if (!gensvm.validate.params(p=p, kappa=kappa, lambda=lambda, epsilon=epsilon, gamma=gamma, weights=weights, kernel=kernel)) return(NULL) # Convert weights to index weight.idx <- which(c("unit", "group") == weights) # Convert kernel to index (remember off-by-one for R vs. C) kernel.idx <- which(c("linear", "poly", "rbf", "sigmoid") == kernel) - 1 seed.rows <- if(is.null(seed.V)) -1 else nrow(seed.V) seed.cols <- if(is.null(seed.V)) -1 else ncol(seed.V) # Call the C train routine out <- .Call("R_gensvm_train", as.matrix(X), as.integer(y.clean), p, lambda, kappa, epsilon, weight.idx, as.integer(kernel.idx), gamma, coef, degree, kernel.eigen.cutoff, as.integer(verbose), as.integer(max.iter), as.integer(random.seed), seed.V, as.integer(seed.rows), as.integer(seed.cols), as.integer(n.objects), as.integer(n.features), as.integer(n.classes)) # build the output object object <- list(call = call, p = p, lambda = lambda, kappa = kappa, epsilon = epsilon, weights = weights, kernel = kernel, gamma = gamma, coef = coef, degree = degree, kernel.eigen.cutoff = kernel.eigen.cutoff, verbose = verbose, random.seed = random.seed, max.iter = max.iter, n.objects = n.objects, n.features = n.features, n.classes = n.classes, classes = classes, V = out$V, n.iter = out$n.iter, n.support = out$n.support, training.time = out$training.time, X.train = if(kernel == 'linear') NULL else X) class(object) <- "gensvm" return(object) }