aboutsummaryrefslogtreecommitdiff
path: root/man/gensvm.Rd
diff options
context:
space:
mode:
Diffstat (limited to 'man/gensvm.Rd')
-rw-r--r--man/gensvm.Rd51
1 files changed, 25 insertions, 26 deletions
diff --git a/man/gensvm.Rd b/man/gensvm.Rd
index e48444f..b6c9bf0 100644
--- a/man/gensvm.Rd
+++ b/man/gensvm.Rd
@@ -11,8 +11,8 @@ gensvm(x, y, p = 1, lambda = 1e-08, kappa = 0, epsilon = 1e-06,
}
\arguments{
\item{x}{data matrix with the predictors. \cr\cr
-Note that for SVMs categorical features should be converted to binary dummy
-features. This can be done with using the \code{\link{model.matrix}}
+Note that for SVMs categorical features should be converted to binary dummy
+features. This can be done with using the \code{\link{model.matrix}}
function (i.e. \code{model.matrix( ~ var - 1)}).}
\item{y}{class labels}
@@ -21,15 +21,15 @@ function (i.e. \code{model.matrix( ~ var - 1)}).}
\item{lambda}{regularization parameter for the loss function (lambda > 0)}
-\item{kappa}{parameter for the hinge function in the loss function (kappa >
+\item{kappa}{parameter for the hinge function in the loss function (kappa >
-1.0)}
-\item{weights}{type or vector of instance weights to use. Options are 'unit'
-for unit weights and 'group' for group size correction weights (eq. 4 in the
+\item{weights}{type or vector of instance weights to use. Options are 'unit'
+for unit weights and 'group' for group size correction weights (eq. 4 in the
paper). Alternatively, a vector of weights can be provided.}
-\item{kernel}{the kernel type to use in the classifier. It must be one of
-'linear', 'poly', 'rbf', or 'sigmoid'. See the section "Kernels in GenSVM"
+\item{kernel}{the kernel type to use in the classifier. It must be one of
+'linear', 'poly', 'rbf', or 'sigmoid'. See the section "Kernels in GenSVM"
in \code{\link{gensvm-package}} for more info.}
\item{gamma}{kernel parameter for the rbf, polynomial, and sigmoid kernel.
@@ -39,24 +39,24 @@ If gamma is 'auto', then 1/n_features will be used.}
\item{degree}{parameter for the polynomial kernel}
-\item{kernel.eigen.cutoff}{Cutoff point for the reduced eigendecomposition
-used with kernel-GenSVM. Eigenvectors for which the ratio between their
-corresponding eigenvalue and the largest eigenvalue is smaller than this
+\item{kernel.eigen.cutoff}{Cutoff point for the reduced eigendecomposition
+used with kernel-GenSVM. Eigenvectors for which the ratio between their
+corresponding eigenvalue and the largest eigenvalue is smaller than this
cutoff value will be dropped.}
\item{verbose}{Turn on verbose output and fit progress}
-\item{random.seed}{Seed for the random number generator (useful for
+\item{random.seed}{Seed for the random number generator (useful for
reproducible output)}
\item{max.iter}{Maximum number of iterations of the optimization algorithm.}
-\item{seed.V}{Matrix to warm-start the optimization algorithm. This is
-typically the output of \code{coef(fit)}. Note that this function will
+\item{seed.V}{Matrix to warm-start the optimization algorithm. This is
+typically the output of \code{coef(fit)}. Note that this function will
silently drop seed.V if the dimensions don't match the provided data.}
}
\value{
-A "gensvm" S3 object is returned for which the print, predict, coef,
+A "gensvm" S3 object is returned for which the print, predict, coef,
and plot methods are available. It has the following items:
\item{call}{The call that was used to construct the model.}
\item{p}{The value of the lp norm in the loss function}
@@ -68,7 +68,7 @@ and plot methods are available. It has the following items:
\item{gamma}{The value of the gamma parameter of the kernel, if applicable}
\item{coef}{The value of the coef parameter of the kernel, if applicable}
\item{degree}{The degree of the kernel, if applicable}
-\item{kernel.eigen.cutoff}{The cutoff value of the reduced
+\item{kernel.eigen.cutoff}{The cutoff value of the reduced
eigendecomposition of the kernel matrix.}
\item{verbose}{Whether or not the model was fitted with progress output}
\item{random.seed}{The random seed used to seed the model.}
@@ -83,12 +83,12 @@ eigendecomposition of the kernel matrix.}
\item{training.time}{Total training time}
}
\description{
-Fits the Generalized Multiclass Support Vector Machine model
-with the given parameters. See the package documentation
+Fits the Generalized Multiclass Support Vector Machine model
+with the given parameters. See the package documentation
(\code{\link{gensvm-package}}) for more general information about GenSVM.
}
\note{
-This function returns partial results when the computation is interrupted by
+This function returns partial results when the computation is interrupted by
the user.
}
\examples{
@@ -121,17 +121,16 @@ all.equal(coef(fit), coef(fit2))
}
-\author{
-Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr
-Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com>
-}
\references{
-Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized
-Multiclass Support Vector Machine}, Journal of Machine Learning Research,
+Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized
+Multiclass Support Vector Machine}, Journal of Machine Learning Research,
17(225):1--42. URL \url{http://jmlr.org/papers/v17/14-526.html}.
}
\seealso{
-\code{\link{coef}}, \code{\link{print}}, \code{\link{predict}},
+\code{\link{coef}}, \code{\link{print}}, \code{\link{predict}},
\code{\link{plot}}, \code{\link{gensvm.grid}}, \code{\link{gensvm-package}}
}
-
+\author{
+Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr
+Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com>
+}