""" Wrapper for GenSVM Not implemented yet: - vector of instance weights - class weights - seed model - max_iter = -1 for unlimited """ from __future__ import print_function import numpy as np cimport numpy as np cimport wrapper np.import_array() GENSVM_KERNEL_TYPES = ["linear", "poly", "rbf", "sigmoid"] def train_wrap( np.ndarray[np.float64_t, ndim=2, mode='c'] X, np.ndarray[np.int_t, ndim=1, mode='c'] y, double p=1.0, double lmd=pow(2, -8), double kappa=0.0, double epsilon=1e-6, int weight_idx=1, str kernel='linear', double gamma=1.0, double coef=0.0, double degree=2.0, double kernel_eigen_cutoff=1e-8, int max_iter=100000000, int random_seed=-1): """ """ # Initialize model and data cdef GenModel *model = gensvm_init_model() cdef GenData *data = gensvm_init_data() cdef long n_obs cdef long n_var cdef long n_class # get the kernel index kernel_index = GENSVM_KERNEL_TYPES.index(kernel) # get the number of classes classes = np.unique(y) n_obs = X.shape[0] n_var = X.shape[1] n_class = classes.shape[0] # Set the data set_data(data, X.data, y.data, X.shape, n_class) # Set the model set_model(model, p, lmd, kappa, epsilon, weight_idx, kernel_index, degree, gamma, coef, kernel_eigen_cutoff, max_iter, random_seed) # Check the parameters error_msg = check_model(model) if error_msg: gensvm_free_model(model) free_data(data) error_repl = error_msg.decode('utf-8') raise ValueError(error_repl) # Do the actual training with nogil: gensvm_train(model, data, NULL) # copy the results cdef np.ndarray[np.float64_t, ndim=2, mode='c'] V V = np.empty((n_var+1, n_class-1)) copy_V(V.data, model) # get other results from model iter_count = get_iter_count(model) training_error = get_training_error(model) fit_status = get_status(model) n_SV = gensvm_num_sv(model) # free model and data gensvm_free_model(model); free_data(data); return (V, n_SV, iter_count, training_error, fit_status) def predict_wrap( np.ndarray[np.float64_t, ndim=2, mode='c'] X, np.ndarray[np.float64_t, ndim=2, mode='c'] V ): """ """ cdef long n_test_obs cdef long n_var cdef long n_class n_test_obs = X.shape[0] n_var = X.shape[1] n_class = V.shape[1] + 1 # output vector cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions predictions = np.empty((n_test_obs, ), dtype=np.int) # do the prediction with nogil: gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class, predictions.data) return predictions def set_verbosity_wrap(int verbosity): """ Control verbosity of gensvm library """ set_verbosity(verbosity)