aboutsummaryrefslogtreecommitdiff
path: root/gensvm/cython_wrapper/wrapper.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'gensvm/cython_wrapper/wrapper.pyx')
-rw-r--r--gensvm/cython_wrapper/wrapper.pyx25
1 files changed, 10 insertions, 15 deletions
diff --git a/gensvm/cython_wrapper/wrapper.pyx b/gensvm/cython_wrapper/wrapper.pyx
index 009e70b..3a85e92 100644
--- a/gensvm/cython_wrapper/wrapper.pyx
+++ b/gensvm/cython_wrapper/wrapper.pyx
@@ -88,8 +88,7 @@ def train_wrap(
raise ValueError(error_repl)
# Do the actual training
- with nogil:
- gensvm_train(model, data, seed_model)
+ gensvm_train(model, data, seed_model)
# update the number of variables (this may have changed due to kernel)
n_var = get_m(model)
@@ -134,12 +133,11 @@ def predict_wrap(
# output vector
cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions
- predictions = np.empty((n_test_obs, ), dtype=np.int)
+ predictions = np.empty((n_test_obs, ), dtype=np.int_)
# do the prediction
- with nogil:
- gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class,
- predictions.data)
+ gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class,
+ predictions.data)
return predictions
@@ -174,10 +172,9 @@ def predict_kernels_wrap(
cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions
predictions = np.empty((n_obs_test, ), dtype=np.int)
- with nogil:
- gensvm_predict_kernels(Xtest.data, Xtrain.data, V.data, V_rows,
- V_cols, n_obs_train, n_obs_test, n_var, n_class, kernel_idx,
- gamma, coef, degree, kernel_eigen_cutoff, predictions.data)
+ gensvm_predict_kernels(Xtest.data, Xtrain.data, V.data, V_rows, V_cols,
+ n_obs_train, n_obs_test, n_var, n_class, kernel_idx, gamma, coef,
+ degree, kernel_eigen_cutoff, predictions.data)
return predictions
@@ -243,9 +240,7 @@ def grid_wrap(
set_queue(queue, n_tasks, tasks)
- with nogil:
- gensvm_train_q_helper(queue, cv_idx.data, store_predictions,
- verbosity)
+ gensvm_train_q_helper(queue, cv_idx.data, store_predictions, verbosity)
cdef np.ndarray[np.int_t, ndim=1, mode='c'] pred
cdef np.ndarray[np.double_t, ndim=1, mode='c'] dur
@@ -264,12 +259,12 @@ def grid_wrap(
results['params'].append(candidate_params[ID])
results['scores'].append(get_task_performance(tasks[ID]))
if store_predictions:
- pred = np.zeros((n_obs, ), dtype=np.int)
+ pred = np.zeros((n_obs, ), dtype=np.int_)
copy_task_predictions(tasks[ID], pred.data, n_obs)
results['predictions'].append(pred.copy())
dur = np.zeros((n_folds, ), dtype=np.double)
copy_task_durations(tasks[ID], dur.data, n_folds)
- results['durations'].append(dur.copy())
+ results['durations'].append(dur)
gensvm_free_queue(queue)
free_data(data)