/** * @file test_gensvm_update.c * @author G.J.J. van den Burg * @date 2016-09-01 * @brief Unit tests for gensvm_update.c functions * * @copyright Copyright 2016, G.J.J. van den Burg. This file is part of GenSVM. GenSVM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GenSVM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GenSVM. If not, see . */ #include "minunit.h" #include "gensvm_optimize.h" #include "gensvm_init.h" #include "gensvm_simplex.h" char *test_gensvm_calculate_omega() { struct GenModel *model = gensvm_init_model(); struct GenData *data = gensvm_init_data(); int n = 5, m = 3, K = 3; data->n = n; data->m = m; data->K = K; data->y = Calloc(long, n); data->y[0] = 2; data->y[1] = 1; data->y[2] = 3; data->y[3] = 2; data->y[4] = 3; model->n = n; model->m = m; model->K = K; model->p = 1.213; gensvm_allocate_model(model); matrix_set(model->H, model->K, 0, 0, 0.8465725800087526); matrix_set(model->H, model->K, 0, 1, 1.2876921677680249); matrix_set(model->H, model->K, 0, 2, 1.0338561593991831); matrix_set(model->H, model->K, 1, 0, 1.1891038526621391); matrix_set(model->H, model->K, 1, 1, 0.4034192031226095); matrix_set(model->H, model->K, 1, 2, 1.5298894170910078); matrix_set(model->H, model->K, 2, 0, 1.3505111116922732); matrix_set(model->H, model->K, 2, 1, 1.4336863304586636); matrix_set(model->H, model->K, 2, 2, 1.7847533480330757); matrix_set(model->H, model->K, 3, 0, 1.7712504341475415); matrix_set(model->H, model->K, 3, 1, 1.6905146737773038); matrix_set(model->H, model->K, 3, 2, 0.8189336598535132); matrix_set(model->H, model->K, 4, 0, 0.6164203008844277); matrix_set(model->H, model->K, 4, 1, 0.2456444285093894); matrix_set(model->H, model->K, 4, 2, 0.8184193969741095); // start test code // mu_assert(fabs(gensvm_calculate_omega(model, data, 0) - 0.7394076262220608) < 1e-14, "Incorrect omega at 0"); mu_assert(fabs(gensvm_calculate_omega(model, data, 1) - 0.7294526264247443) < 1e-14, "Incorrect omega at 1"); mu_assert(fabs(gensvm_calculate_omega(model, data, 2) - 0.6802499471888741) < 1e-14, "Incorrect omega at 2"); mu_assert(fabs(gensvm_calculate_omega(model, data, 3) - 0.6886792032441273) < 1e-14, "Incorrect omega at 3"); mu_assert(fabs(gensvm_calculate_omega(model, data, 4) - 0.8695329737474283) < 1e-14, "Incorrect omega at 4"); // end test code // gensvm_free_model(model); gensvm_free_data(data); return NULL; } char *test_gensvm_majorize_is_simple() { struct GenModel *model = gensvm_init_model(); struct GenData *data = gensvm_init_data(); int n = 5, m = 3, K = 3; data->n = n; data->m = m; data->K = K; data->y = Calloc(long, n); data->y[0] = 2; data->y[1] = 1; data->y[2] = 3; data->y[3] = 2; data->y[4] = 3; model->n = n; model->m = m; model->K = K; model->p = 1.213; gensvm_allocate_model(model); matrix_set(model->H, model->K, 0, 0, 0.8465725800087526); matrix_set(model->H, model->K, 0, 1, 1.2876921677680249); matrix_set(model->H, model->K, 0, 2, 1.0338561593991831); matrix_set(model->H, model->K, 1, 0, 1.1891038526621391); matrix_set(model->H, model->K, 1, 1, 0.4034192031226095); matrix_set(model->H, model->K, 1, 2, 0.0); matrix_set(model->H, model->K, 2, 0, 0.5); matrix_set(model->H, model->K, 2, 1, 0.0); matrix_set(model->H, model->K, 2, 2, 1.1); matrix_set(model->H, model->K, 3, 0, 0.0); matrix_set(model->H, model->K, 3, 1, 0.0); matrix_set(model->H, model->K, 3, 2, 0.8189336598535132); matrix_set(model->H, model->K, 4, 0, 0.6164203008844277); matrix_set(model->H, model->K, 4, 1, 0.2456444285093894); matrix_set(model->H, model->K, 4, 2, 0.8184193969741095); // start test code // mu_assert(gensvm_majorize_is_simple(model, data, 0) == false, "Incorrect simple at 0"); mu_assert(gensvm_majorize_is_simple(model, data, 1) == true, "Incorrect simple at 1"); mu_assert(gensvm_majorize_is_simple(model, data, 2) == true, "Incorrect simple at 2"); mu_assert(gensvm_majorize_is_simple(model, data, 3) == true, "Incorrect simple at 3"); mu_assert(gensvm_majorize_is_simple(model, data, 4) == false, "Incorrect simple at 4"); // end test code // gensvm_free_model(model); gensvm_free_data(data); return NULL; } char *test_gensvm_calculate_ab_non_simple() { struct GenModel *model = gensvm_init_model(); int n = 1, m = 1, K = 1; model->n = n; model->m = m; model->K = K; model->kappa = 0.5; gensvm_allocate_model(model); // start test code // double a, b_aq; // tests with p = 2 model->p = 2.0; matrix_set(model->Q, K, 0, 0, -1.0); gensvm_calculate_ab_non_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 1.5) < 1e-14, "Incorrect value for a (1)"); mu_assert(fabs(b_aq - 1.25) < 1e-14, "Incorrect value for b (1)"); matrix_set(model->Q, K, 0, 0, 0.5); gensvm_calculate_ab_non_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 1.5) < 1e-14, "Incorrect value for a (2)"); mu_assert(fabs(b_aq - 0.0277777777777778) < 1e-14, "Incorrect value for b (2)"); matrix_set(model->Q, K, 0, 0, 2.0); gensvm_calculate_ab_non_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 1.5) < 1e-14, "Incorrect value for a (3)"); mu_assert(fabs(b_aq - 0.0) < 1e-14, "Incorrect value for b (3)"); // tests with p != 2 (namely, 1.5) // Note that here (p + kappa - 1)/(p - 2) = -2 // // We distinguish: q <= (p + kappa - 1)/(p - 2) // q in (p + kappa - 1)/(p - 2), -kappa] // q in (-kappa, 1] // q > 1 model->p = 1.5; matrix_set(model->Q, K, 0, 0, -3.0); gensvm_calculate_ab_non_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 0.312018860376691) < 1e-14, "Incorrect value for a (4)"); mu_assert(fabs(b_aq - 1.35208172829900) < 1e-14, "Incorrect value for b (4)"); matrix_set(model->Q, K, 0, 0, -1.0); gensvm_calculate_ab_non_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 0.866025403784439) < 1e-14, "Incorrect value for a (5)"); mu_assert(fabs(b_aq - 0.838525491562421) < 1e-14, "Incorrect value for b (5)"); matrix_set(model->Q, K, 0, 0, 0.5); gensvm_calculate_ab_non_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 0.866025403784439) < 1e-14, "Incorrect value for a (6)"); mu_assert(fabs(b_aq - 0.0721687836487032) < 1e-14, "Incorrect value for b (6)"); matrix_set(model->Q, K, 0, 0, 2.0); gensvm_calculate_ab_non_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 0.245495126515491) < 1e-14, "Incorrect value for a (7)"); mu_assert(fabs(b_aq - 0.0) < 1e-14, "Incorrect value for b (7)"); // end test code // gensvm_free_model(model); return NULL; } char *test_gensvm_calculate_ab_simple() { struct GenModel *model = gensvm_init_model(); int n = 1, m = 1, K = 1; model->n = n; model->m = m; model->K = K; model->kappa = 0.5; gensvm_allocate_model(model); // start test code // double a, b_aq; matrix_set(model->Q, K, 0, 0, -1.5); gensvm_calculate_ab_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 0.142857142857143) < 1e-14, "Incorrect value for a (1)"); mu_assert(fabs(b_aq - 0.5) < 1e-14, "Incorrect value for b (1)"); matrix_set(model->Q, K, 0, 0, 0.75); gensvm_calculate_ab_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 0.333333333333333) < 1e-14, "Incorrect value for a (2)"); mu_assert(fabs(b_aq - 0.0833333333333333) < 1e-14, "Incorrect value for b (2)"); matrix_set(model->Q, K, 0, 0, 2.0); gensvm_calculate_ab_simple(model, 0, 0, &a, &b_aq); mu_assert(fabs(a - 0.142857142857143) < 1e-14, "Incorrect value for a (3)"); mu_assert(fabs(b_aq - 0.0) < 1e-14, "Incorrect value for b (3)"); // end test code // gensvm_free_model(model); return NULL; } char *test_gensvm_get_update() { struct GenModel *model = gensvm_init_model(); struct GenData *data = gensvm_init_data(); int n = 8, m = 3, K = 3; model->n = n; model->m = m; model->K = K; struct GenWork *work = gensvm_init_work(model); // initialize data data->n = n; data->m = m; data->K = K; data->y = Calloc(long, n); data->y[0] = 2; data->y[1] = 1; data->y[2] = 3; data->y[3] = 2; data->y[4] = 3; data->y[5] = 3; data->y[6] = 1; data->y[7] = 2; data->Z = Calloc(double, n*(m+1)); matrix_set(data->Z, data->m+1, 0, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 0, 1, 0.6437306339619082); matrix_set(data->Z, data->m+1, 0, 2, -0.3276778319121999); matrix_set(data->Z, data->m+1, 0, 3, 0.1564053473463392); matrix_set(data->Z, data->m+1, 1, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 1, 1, -0.8683091763200105); matrix_set(data->Z, data->m+1, 1, 2, -0.6910830836015162); matrix_set(data->Z, data->m+1, 1, 3, -0.9675430665130734); matrix_set(data->Z, data->m+1, 2, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 2, 1, -0.5024888699077029); matrix_set(data->Z, data->m+1, 2, 2, -0.9649738292750712); matrix_set(data->Z, data->m+1, 2, 3, 0.0776560791351473); matrix_set(data->Z, data->m+1, 3, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 3, 1, 0.8206429991392579); matrix_set(data->Z, data->m+1, 3, 2, -0.7255681388968501); matrix_set(data->Z, data->m+1, 3, 3, -0.9475952272877165); matrix_set(data->Z, data->m+1, 4, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 4, 1, 0.3426050950418613); matrix_set(data->Z, data->m+1, 4, 2, -0.5340602451864306); matrix_set(data->Z, data->m+1, 4, 3, -0.7159704241662815); matrix_set(data->Z, data->m+1, 5, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 5, 1, -0.3077314049206620); matrix_set(data->Z, data->m+1, 5, 2, 0.1141288036288195); matrix_set(data->Z, data->m+1, 5, 3, -0.7060114827535847); matrix_set(data->Z, data->m+1, 6, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 6, 1, 0.6301294373610109); matrix_set(data->Z, data->m+1, 6, 2, -0.9983027363627769); matrix_set(data->Z, data->m+1, 6, 3, -0.9365684178444004); matrix_set(data->Z, data->m+1, 7, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 7, 1, -0.0665379368401439); matrix_set(data->Z, data->m+1, 7, 2, -0.1781385556871763); matrix_set(data->Z, data->m+1, 7, 3, -0.7292593770500276); // initialize model model->p = 1.1; model->lambda = 0.123; model->weight_idx = 1; model->kappa = 0.5; // initialize matrices gensvm_allocate_model(model); gensvm_initialize_weights(data, model); gensvm_simplex(model); gensvm_simplex_diff(model); // initialize V matrix_set(model->V, model->K-1, 0, 0, -0.7593642121025029); matrix_set(model->V, model->K-1, 0, 1, -0.5497320698504756); matrix_set(model->V, model->K-1, 1, 0, 0.2982680646268177); matrix_set(model->V, model->K-1, 1, 1, -0.2491408622891925); matrix_set(model->V, model->K-1, 2, 0, -0.3118572761092807); matrix_set(model->V, model->K-1, 2, 1, 0.5461219445756100); matrix_set(model->V, model->K-1, 3, 0, -0.3198994238626641); matrix_set(model->V, model->K-1, 3, 1, 0.7134997072555367); // start test code // // these need to be prepared for the update call gensvm_calculate_errors(model, data, work->ZV); gensvm_calculate_huber(model); // run the actual update call gensvm_get_update(model, data, work); // test values mu_assert(fabs(matrix_get(model->V, model->K-1, 0, 0) - -0.1323791019594062) < 1e-14, "Incorrect value of model->V at 0, 0"); mu_assert(fabs(matrix_get(model->V, model->K-1, 0, 1) - -0.3598407983154332) < 1e-14, "Incorrect value of model->V at 0, 1"); mu_assert(fabs(matrix_get(model->V, model->K-1, 1, 0) - 0.3532993103400935) < 1e-14, "Incorrect value of model->V at 1, 0"); mu_assert(fabs(matrix_get(model->V, model->K-1, 1, 1) - -0.4094572388475382) < 1e-14, "Incorrect value of model->V at 1, 1"); mu_assert(fabs(matrix_get(model->V, model->K-1, 2, 0) - 0.1313169839871234) < 1e-14, "Incorrect value of model->V at 2, 0"); mu_assert(fabs(matrix_get(model->V, model->K-1, 2, 1) - 0.2423439972728328) < 1e-14, "Incorrect value of model->V at 2, 1"); mu_assert(fabs(matrix_get(model->V, model->K-1, 3, 0) - 0.0458431025455224) < 1e-14, "Incorrect value of model->V at 3, 0"); mu_assert(fabs(matrix_get(model->V, model->K-1, 3, 1) - 0.4390030236354089) < 1e-14, "Incorrect value of model->V at 3, 1"); // end test code // gensvm_free_model(model); gensvm_free_data(data); gensvm_free_work(work); return NULL; } char *test_gensvm_get_update_sparse() { struct GenModel *model = gensvm_init_model(); struct GenData *data = gensvm_init_data(); int n = 8, m = 3, K = 3; model->n = n; model->m = m; model->K = K; struct GenWork *work = gensvm_init_work(model); // initialize data data->n = n; data->m = m; data->K = K; data->y = Calloc(long, n); data->y[0] = 2; data->y[1] = 1; data->y[2] = 3; data->y[3] = 2; data->y[4] = 3; data->y[5] = 3; data->y[6] = 1; data->y[7] = 2; data->Z = Calloc(double, n*(m+1)); matrix_set(data->Z, data->m+1, 0, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 0, 1, 0.6437306339619082); matrix_set(data->Z, data->m+1, 0, 2, -0.3276778319121999); matrix_set(data->Z, data->m+1, 0, 3, 0.1564053473463392); matrix_set(data->Z, data->m+1, 1, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 1, 1, -0.8683091763200105); matrix_set(data->Z, data->m+1, 1, 2, -0.6910830836015162); matrix_set(data->Z, data->m+1, 1, 3, -0.9675430665130734); matrix_set(data->Z, data->m+1, 2, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 2, 1, -0.5024888699077029); matrix_set(data->Z, data->m+1, 2, 2, -0.9649738292750712); matrix_set(data->Z, data->m+1, 2, 3, 0.0776560791351473); matrix_set(data->Z, data->m+1, 3, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 3, 1, 0.8206429991392579); matrix_set(data->Z, data->m+1, 3, 2, -0.7255681388968501); matrix_set(data->Z, data->m+1, 3, 3, -0.9475952272877165); matrix_set(data->Z, data->m+1, 4, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 4, 1, 0.3426050950418613); matrix_set(data->Z, data->m+1, 4, 2, -0.5340602451864306); matrix_set(data->Z, data->m+1, 4, 3, -0.7159704241662815); matrix_set(data->Z, data->m+1, 5, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 5, 1, -0.3077314049206620); matrix_set(data->Z, data->m+1, 5, 2, 0.1141288036288195); matrix_set(data->Z, data->m+1, 5, 3, -0.7060114827535847); matrix_set(data->Z, data->m+1, 6, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 6, 1, 0.6301294373610109); matrix_set(data->Z, data->m+1, 6, 2, -0.9983027363627769); matrix_set(data->Z, data->m+1, 6, 3, -0.9365684178444004); matrix_set(data->Z, data->m+1, 7, 0, 1.0000000000000000); matrix_set(data->Z, data->m+1, 7, 1, -0.0665379368401439); matrix_set(data->Z, data->m+1, 7, 2, -0.1781385556871763); matrix_set(data->Z, data->m+1, 7, 3, -0.7292593770500276); // convert Z to a sparse matrix to test the sparse functions data->spZ = gensvm_dense_to_sparse(data->Z, data->n, data->m+1); free(data->RAW); data->RAW = NULL; free(data->Z); data->Z = NULL; // initialize model model->p = 1.1; model->lambda = 0.123; model->weight_idx = 1; model->kappa = 0.5; // initialize matrices gensvm_allocate_model(model); gensvm_initialize_weights(data, model); gensvm_simplex(model); gensvm_simplex_diff(model); // initialize V matrix_set(model->V, model->K-1, 0, 0, -0.7593642121025029); matrix_set(model->V, model->K-1, 0, 1, -0.5497320698504756); matrix_set(model->V, model->K-1, 1, 0, 0.2982680646268177); matrix_set(model->V, model->K-1, 1, 1, -0.2491408622891925); matrix_set(model->V, model->K-1, 2, 0, -0.3118572761092807); matrix_set(model->V, model->K-1, 2, 1, 0.5461219445756100); matrix_set(model->V, model->K-1, 3, 0, -0.3198994238626641); matrix_set(model->V, model->K-1, 3, 1, 0.7134997072555367); // start test code // // these need to be prepared for the update call gensvm_calculate_errors(model, data, work->ZV); gensvm_calculate_huber(model); // run the actual update call gensvm_get_update(model, data, work); // test values mu_assert(fabs(matrix_get(model->V, model->K-1, 0, 0) - -0.1323791019594062) < 1e-14, "Incorrect value of model->V at 0, 0"); mu_assert(fabs(matrix_get(model->V, model->K-1, 0, 1) - -0.3598407983154332) < 1e-14, "Incorrect value of model->V at 0, 1"); mu_assert(fabs(matrix_get(model->V, model->K-1, 1, 0) - 0.3532993103400935) < 1e-14, "Incorrect value of model->V at 1, 0"); mu_assert(fabs(matrix_get(model->V, model->K-1, 1, 1) - -0.4094572388475382) < 1e-14, "Incorrect value of model->V at 1, 1"); mu_assert(fabs(matrix_get(model->V, model->K-1, 2, 0) - 0.1313169839871234) < 1e-14, "Incorrect value of model->V at 2, 0"); mu_assert(fabs(matrix_get(model->V, model->K-1, 2, 1) - 0.2423439972728328) < 1e-14, "Incorrect value of model->V at 2, 1"); mu_assert(fabs(matrix_get(model->V, model->K-1, 3, 0) - 0.0458431025455224) < 1e-14, "Incorrect value of model->V at 3, 0"); mu_assert(fabs(matrix_get(model->V, model->K-1, 3, 1) - 0.4390030236354089) < 1e-14, "Incorrect value of model->V at 3, 1"); // end test code // gensvm_free_model(model); gensvm_free_data(data); gensvm_free_work(work); return NULL; } char *test_dposv() { int n = 6, m = 5; // start test code // double *A = Calloc(double, n*n); double *B = Calloc(double, n*m); // We're only storing the upper triangular part of the symmetric // matrix A. matrix_set(A, n, 0, 0, 6.2522023496540386); matrix_set(A, n, 0, 1, 1.2760969977888754); matrix_set(A, n, 0, 2, 1.1267774552193974); matrix_set(A, n, 0, 3, 0.8384267227932789); matrix_set(A, n, 0, 4, 0.9588857509656767); matrix_set(A, n, 0, 5, 0.7965747978871199); matrix_set(A, n, 1, 1, 6.7539376310748924); matrix_set(A, n, 1, 2, 0.5908599276261999); matrix_set(A, n, 1, 3, 0.9987368128192129); matrix_set(A, n, 1, 4, 1.1142949385131484); matrix_set(A, n, 1, 5, 1.4150107613377123); matrix_set(A, n, 2, 2, 7.3361678639533139); matrix_set(A, n, 2, 3, 1.5596679563906113); matrix_set(A, n, 2, 4, 0.8162441257417704); matrix_set(A, n, 2, 5, 0.8701893160678078); matrix_set(A, n, 3, 3, 6.8330423955320834); matrix_set(A, n, 3, 4, 1.6081779105091201); matrix_set(A, n, 3, 5, 1.0498769837396527); matrix_set(A, n, 4, 4, 7.6810607313742949); matrix_set(A, n, 4, 5, 1.1352511350739003); matrix_set(A, n, 5, 5, 7.0573435553104567); // this is the matrix B (n x m), stored in COLUMN-MAJOR ORDER B[0] = 0.5759809004700531; B[1] = 0.4643751885289473; B[2] = 0.1914807543974765; B[3] = 0.2875503245961965; B[4] = 0.0493123646253395; B[5] = 0.4333053066976881; B[6] = 0.4738306027724854; B[7] = 0.2460182087225041; B[8] = 0.1620492662433550; B[9] = 0.9596380576403235; B[10] = 0.7244837218691289; B[11] = 0.9437116578537014; B[12] = 0.3320986772155025; B[13] = 0.4717424581951766; B[14] = 0.9206089360217588; B[15] = 0.7059004575000609; B[16] = 0.1696670763906902; B[17] = 0.4896586269167711; B[18] = 0.9539497766794410; B[19] = 0.2269749103273779; B[20] = 0.8832156948007016; B[21] = 0.4682217970327739; B[22] = 0.5293439096127632; B[23] = 0.8699136677253214; B[24] = 0.1622687366790325; B[25] = 0.4511598310105013; B[26] = 0.5587302139109592; B[27] = 0.7456952498557438; B[28] = 0.5923112589693547; B[29] = 0.2243481938151050; // note the 'L' here denotes the lower triangular part of A. Above we // stored the upper triangular part of A in row-major order, so that's // the lower triangular part in column-major order, which Lapack uses. int status = dposv('L', n, m, A, n, B, n); mu_assert(status == 0, "dposv didn't return status success"); // Since B now contains the solution in Column-Major order, we have to // check it in that order. mu_assert(fabs(B[0] - 0.0770250502756885) < 1e-14, "Incorrect value of B at 0"); mu_assert(fabs(B[1] - 0.0449013611583528) < 1e-14, "Incorrect value of B at 1"); mu_assert(fabs(B[2] - 0.0028421256926631) < 1e-14, "Incorrect value of B at 2"); mu_assert(fabs(B[3] - 0.0238082780914757) < 1e-14, "Incorrect value of B at 3"); mu_assert(fabs(B[4] - -0.0213884392480803) < 1e-14, "Incorrect value of B at 4"); mu_assert(fabs(B[5] - 0.0432493445363141) < 1e-14, "Incorrect value of B at 5"); mu_assert(fabs(B[6] - 0.0469188408250497) < 1e-14, "Incorrect value of B at 6"); mu_assert(fabs(B[7] - -0.0188676544565197) < 1e-14, "Incorrect value of B at 7"); mu_assert(fabs(B[8] - -0.0268693544126544) < 1e-14, "Incorrect value of B at 8"); mu_assert(fabs(B[9] - 0.1139942447258460) < 1e-14, "Incorrect value of B at 9"); mu_assert(fabs(B[10] - 0.0539483576192093) < 1e-14, "Incorrect value of B at 10"); mu_assert(fabs(B[11] - 0.1098843745987866) < 1e-14, "Incorrect value of B at 11"); mu_assert(fabs(B[12] - 0.0142822905211067) < 1e-14, "Incorrect value of B at 12"); mu_assert(fabs(B[13] - 0.0425078586146396) < 1e-14, "Incorrect value of B at 13"); mu_assert(fabs(B[14] - 0.1022650353097420) < 1e-14, "Incorrect value of B at 14"); mu_assert(fabs(B[15] - 0.0700476338859921) < 1e-14, "Incorrect value of B at 15"); mu_assert(fabs(B[16] - -0.0171546096353451) < 1e-14, "Incorrect value of B at 16"); mu_assert(fabs(B[17] - 0.0389772844468578) < 1e-14, "Incorrect value of B at 17"); mu_assert(fabs(B[18] - 0.1231757430810565) < 1e-14, "Incorrect value of B at 18"); mu_assert(fabs(B[19] - -0.0246954324681607) < 1e-14, "Incorrect value of B at 19"); mu_assert(fabs(B[20] - 0.0853098528328778) < 1e-14, "Incorrect value of B at 20"); mu_assert(fabs(B[21] - 0.0155226252622933) < 1e-14, "Incorrect value of B at 21"); mu_assert(fabs(B[22] - 0.0305321945431931) < 1e-14, "Incorrect value of B at 22"); mu_assert(fabs(B[23] - 0.0965724559730953) < 1e-14, "Incorrect value of B at 23"); mu_assert(fabs(B[24] - -0.0106596940426243) < 1e-14, "Incorrect value of B at 24"); mu_assert(fabs(B[25] - 0.0446093337039209) < 1e-14, "Incorrect value of B at 25"); mu_assert(fabs(B[26] - 0.0517721408799503) < 1e-14, "Incorrect value of B at 26"); mu_assert(fabs(B[27] - 0.0807167333268751) < 1e-14, "Incorrect value of B at 27"); mu_assert(fabs(B[28] - 0.0499219869343351) < 1e-14, "Incorrect value of B at 28"); mu_assert(fabs(B[29] - -0.0023736192508975) < 1e-14, "Incorrect value of B at 29"); // end test code // free(A); free(B); return NULL; } char *test_dsysv() { int n = 6, m = 5; // start test code // double *A = Calloc(double, n*n); double *B = Calloc(double, n*m); // only store the upper triangular part of A matrix_set(A, n, 0, 0, 0.4543421836368821); matrix_set(A, n, 0, 1, 0.8708338836669620); matrix_set(A, n, 0, 2, 1.3638340495356920); matrix_set(A, n, 0, 3, 0.8361050302144852); matrix_set(A, n, 0, 4, 1.3203463886997013); matrix_set(A, n, 0, 5, 0.3915472119381547); matrix_set(A, n, 1, 1, 1.4781728513484600); matrix_set(A, n, 1, 2, 1.7275151336935415); matrix_set(A, n, 1, 3, 1.1817139356024176); matrix_set(A, n, 1, 4, 0.7436086782250922); matrix_set(A, n, 1, 5, 0.1101758222549450); matrix_set(A, n, 2, 2, 1.9363682709237851); matrix_set(A, n, 2, 3, 1.1255164391384127); matrix_set(A, n, 2, 4, 1.0935575148560115); matrix_set(A, n, 2, 5, 1.4678279983625921); matrix_set(A, n, 3, 3, 1.7500757162326757); matrix_set(A, n, 3, 4, 1.5490921663229316); matrix_set(A, n, 3, 5, 1.0305675837706338); matrix_set(A, n, 4, 4, 0.4015851628106807); matrix_set(A, n, 4, 5, 1.2487496402900566); matrix_set(A, n, 5, 5, 0.7245473723012897); // Store B in column-major order! B[0] = 0.6037912122210694; B[1] = 0.5464186020522516; B[2] = 0.1810847918541411; B[3] = 0.1418268895582175; B[4] = 0.5459836535934901; B[5] = 0.5890609930309275; B[6] = 0.1128454279279324; B[7] = 0.8930541056550655; B[8] = 0.6946437745982983; B[9] = 0.0955380494302154; B[10] = 0.5750037200376288; B[11] = 0.0326245221201559; B[12] = 0.3336701777312929; B[13] = 0.7648765739095678; B[14] = 0.2662986413718805; B[15] = 0.7850810368985298; B[16] = 0.5432388739552745; B[17] = 0.4387739258059151; B[18] = 0.4257906469646436; B[19] = 0.1272470768775465; B[20] = 0.4276616397814972; B[21] = 0.8137579718316245; B[22] = 0.6849003723960281; B[23] = 0.1768571691078990; B[24] = 0.4183278358395650; B[25] = 0.6517633972400351; B[26] = 0.1154775550239331; B[27] = 0.4217248849174023; B[28] = 0.9179697263236190; B[29] = 0.6532254399609347; // run dsysv, note that Lapack expects matrices to be in column-major // order, so we can use the 'L' notation for the triangle of A, since // we've stored the upper triangle in Row-Major order. int *IPIV = Calloc(int, n); double *WORK = Calloc(double, 1); int status; // first we determine the necessary size of the WORK array status = dsysv('L', n, m, A, n, IPIV, B, n, WORK, -1); mu_assert(status == 0, "dsysv workspace query failed"); int LWORK = WORK[0]; WORK = Realloc(WORK, double, LWORK); status = dsysv('L', n, m, A, n, IPIV, B, n, WORK, LWORK); mu_assert(status == 0, "dsysv didn't return status success"); // Since B now contains the solution in Column-Major order, we have to // check it in that order mu_assert(fabs(B[0] - 3.0915448286548806) < 1e-14, "Incorrect value of B at 0"); mu_assert(fabs(B[1] - -1.2114333666218096) < 1e-14, "Incorrect value of B at 1"); mu_assert(fabs(B[2] - -0.1734297056577389) < 1e-14, "Incorrect value of B at 2"); mu_assert(fabs(B[3] - -0.6989941801726605) < 1e-14, "Incorrect value of B at 3"); mu_assert(fabs(B[4] - 1.2577948324106381) < 1e-14, "Incorrect value of B at 4"); mu_assert(fabs(B[5] - -1.4956913279293909) < 1e-14, "Incorrect value of B at 5"); mu_assert(fabs(B[6] - -0.2923881304345451) < 1e-14, "Incorrect value of B at 6"); mu_assert(fabs(B[7] - 0.3467010144627596) < 1e-14, "Incorrect value of B at 7"); mu_assert(fabs(B[8] - 0.4892730831569431) < 1e-14, "Incorrect value of B at 8"); mu_assert(fabs(B[9] - 0.2811039364176572) < 1e-14, "Incorrect value of B at 9"); mu_assert(fabs(B[10] - -0.7323586733947237) < 1e-14, "Incorrect value of B at 10"); mu_assert(fabs(B[11] - 0.0214996365534143) < 1e-14, "Incorrect value of B at 11"); mu_assert(fabs(B[12] - -0.9355264353773129) < 1e-14, "Incorrect value of B at 12"); mu_assert(fabs(B[13] - 0.2709743256273919) < 1e-14, "Incorrect value of B at 13"); mu_assert(fabs(B[14] - 0.2328234557913496) < 1e-14, "Incorrect value of B at 14"); mu_assert(fabs(B[15] - 0.9367092697976086) < 1e-14, "Incorrect value of B at 15"); mu_assert(fabs(B[16] - -0.4501075692310449) < 1e-14, "Incorrect value of B at 16"); mu_assert(fabs(B[17] - 0.0416902255163366) < 1e-14, "Incorrect value of B at 17"); mu_assert(fabs(B[18] - 2.2216982312706905) < 1e-14, "Incorrect value of B at 18"); mu_assert(fabs(B[19] - -0.4820931673893176) < 1e-14, "Incorrect value of B at 19"); mu_assert(fabs(B[20] - -0.8456462251088332) < 1e-14, "Incorrect value of B at 20"); mu_assert(fabs(B[21] - -0.3761761825939751) < 1e-14, "Incorrect value of B at 21"); mu_assert(fabs(B[22] - 1.1921920764994696) < 1e-14, "Incorrect value of B at 22"); mu_assert(fabs(B[23] - -0.6897255145640184) < 1e-14, "Incorrect value of B at 23"); mu_assert(fabs(B[24] - 2.0325624816957180) < 1e-14, "Incorrect value of B at 24"); mu_assert(fabs(B[25] - -0.9900930297944344) < 1e-14, "Incorrect value of B at 25"); mu_assert(fabs(B[26] - -0.0462533459389938) < 1e-14, "Incorrect value of B at 26"); mu_assert(fabs(B[27] - 0.0960916931433909) < 1e-14, "Incorrect value of B at 27"); mu_assert(fabs(B[28] - 0.5805302287627144) < 1e-14, "Incorrect value of B at 28"); mu_assert(fabs(B[29] - -1.0897953557455400) < 1e-14, "Incorrect value of B at 29"); free(WORK); free(IPIV); // end test code // free(A); free(B); return NULL; } char *all_tests() { mu_suite_start(); mu_run_test(test_gensvm_calculate_omega); mu_run_test(test_gensvm_majorize_is_simple); mu_run_test(test_gensvm_calculate_ab_non_simple); mu_run_test(test_gensvm_calculate_ab_simple); mu_run_test(test_dposv); mu_run_test(test_dsysv); mu_run_test(test_gensvm_get_update); mu_run_test(test_gensvm_get_update_sparse); return NULL; } RUN_TESTS(all_tests);