/** * @file test_gensvm_cv_util.c * @author G.J.J. van den Burg * @date 2016-05-01 * @brief Unit tests for gensvm_cv_util.c functions * * @copyright Copyright 2016, G.J.J. van den Burg. This file is part of GenSVM. GenSVM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GenSVM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GenSVM. If not, see . */ #include "minunit.h" #include "gensvm_cv_util.h" char *test_make_cv_split_1() { srand(0); int i, j; long N = 10; long folds = 4; long *cv_idx = Calloc(long, N); // start test code // gensvm_make_cv_split(N, folds, cv_idx); // check if the values are between [0, folds-1] for (i=0; iK = 3; full->n = 10; full->m = 2; full->r = 2; full->y = Calloc(long, full->n); full->y[0] = 1; full->y[1] = 2; full->y[2] = 3; full->y[3] = 1; full->y[4] = 2; full->y[5] = 3; full->y[6] = 1; full->y[7] = 2; full->y[8] = 3; full->y[9] = 1; full->RAW = Calloc(double, full->n * (full->m+1)); matrix_set(full->RAW, full->m+1, 0, 1, 1.0); matrix_set(full->RAW, full->m+1, 0, 2, 1.0); matrix_set(full->RAW, full->m+1, 1, 1, 2.0); matrix_set(full->RAW, full->m+1, 1, 2, 2.0); matrix_set(full->RAW, full->m+1, 2, 1, 3.0); matrix_set(full->RAW, full->m+1, 2, 2, 3.0); matrix_set(full->RAW, full->m+1, 3, 1, 4.0); matrix_set(full->RAW, full->m+1, 3, 2, 4.0); matrix_set(full->RAW, full->m+1, 4, 1, 5.0); matrix_set(full->RAW, full->m+1, 4, 2, 5.0); matrix_set(full->RAW, full->m+1, 5, 1, 6.0); matrix_set(full->RAW, full->m+1, 5, 2, 6.0); matrix_set(full->RAW, full->m+1, 6, 1, 7.0); matrix_set(full->RAW, full->m+1, 6, 2, 7.0); matrix_set(full->RAW, full->m+1, 7, 1, 8.0); matrix_set(full->RAW, full->m+1, 7, 2, 8.0); matrix_set(full->RAW, full->m+1, 8, 1, 9.0); matrix_set(full->RAW, full->m+1, 8, 2, 9.0); matrix_set(full->RAW, full->m+1, 9, 1, 10.0); matrix_set(full->RAW, full->m+1, 9, 2, 10.0); full->Z = full->RAW; long *cv_idx = Calloc(long, full->n); cv_idx[0] = 1; cv_idx[1] = 0; cv_idx[2] = 1; cv_idx[3] = 0; cv_idx[4] = 1; cv_idx[5] = 2; cv_idx[6] = 3; cv_idx[7] = 2; cv_idx[8] = 3; cv_idx[9] = 2; struct GenData *train = gensvm_init_data(); struct GenData *test = gensvm_init_data(); // start test code // gensvm_get_tt_split(full, train, test, cv_idx, 0); mu_assert(train->n == 8, "train_n incorrect."); mu_assert(test->n == 2, "test_n incorrect."); mu_assert(train->m == 2, "train_m incorrect."); mu_assert(test->m == 2, "test_m incorrect."); mu_assert(train->K == 3, "train_K incorrect."); mu_assert(test->K == 3, "test_K incorrect."); mu_assert(train->y[0] == 1, "train y incorrect."); mu_assert(train->y[1] == 3, "train y incorrect."); mu_assert(train->y[2] == 2, "train y incorrect."); mu_assert(train->y[3] == 3, "train y incorrect."); mu_assert(train->y[4] == 1, "train y incorrect."); mu_assert(train->y[5] == 2, "train y incorrect."); mu_assert(train->y[6] == 3, "train y incorrect."); mu_assert(train->y[7] == 1, "train y incorrect."); mu_assert(test->y[0] == 2, "test y incorrect."); mu_assert(test->y[1] == 1, "test y incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 0, 0) == 0.0, "train RAW 0, 0 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 0, 1) == 1.0, "train RAW 0, 1 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 0, 2) == 1.0, "train RAW 0, 2 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 1, 0) == 0.0, "train RAW 1, 0 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 1, 1) == 3.0, "train RAW 1, 1 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 1, 2) == 3.0, "train RAW 1, 2 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 2, 0) == 0.0, "train RAW 2, 0 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 2, 1) == 5.0, "train RAW 2, 1 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 2, 2) == 5.0, "train RAW 2, 2 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 3, 0) == 0.0, "train RAW 3, 0 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 3, 1) == 6.0, "train RAW 3, 1 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 3, 2) == 6.0, "train RAW 3, 2 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 4, 0) == 0.0, "train RAW 4, 0 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 4, 1) == 7.0, "train RAW 4, 1 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 4, 2) == 7.0, "train RAW 4, 2 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 5, 0) == 0.0, "train RAW 5, 0 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 5, 1) == 8.0, "train RAW 5, 1 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 5, 2) == 8.0, "train RAW 5, 2 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 6, 0) == 0.0, "train RAW 6, 0 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 6, 1) == 9.0, "train RAW 6, 1 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 6, 2) == 9.0, "train RAW 6, 2 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 7, 0) == 0.0, "train RAW 7, 0 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 7, 1) == 10.0, "train RAW 7, 1 incorrect."); mu_assert(matrix_get(train->RAW, train->m+1, 7, 2) == 10.0, "train RAW 7, 2 incorrect."); mu_assert(matrix_get(test->RAW, train->m+1, 0, 0) == 0.0, "test RAW 0, 0 incorrect."); mu_assert(matrix_get(test->RAW, train->m+1, 0, 1) == 2.0, "test RAW 0, 1 incorrect."); mu_assert(matrix_get(test->RAW, train->m+1, 0, 2) == 2.0, "test RAW 0, 2 incorrect."); mu_assert(matrix_get(test->RAW, train->m+1, 1, 0) == 0.0, "test RAW 1, 0 incorrect."); mu_assert(matrix_get(test->RAW, train->m+1, 1, 1) == 4.0, "test RAW 1, 1 incorrect."); mu_assert(matrix_get(test->RAW, train->m+1, 1, 2) == 4.0, "test RAW 1, 2 incorrect."); // end test code // gensvm_free_data(full); gensvm_free_data(train); gensvm_free_data(test); free(cv_idx); return NULL; } char *test_get_tt_split_sparse() { struct GenData *full = gensvm_init_data(); full->K = 3; full->n = 10; full->m = 2; full->r = 2; full->y = Calloc(long, full->n); full->y[0] = 1; full->y[1] = 2; full->y[2] = 3; full->y[3] = 1; full->y[4] = 2; full->y[5] = 3; full->y[6] = 1; full->y[7] = 2; full->y[8] = 3; full->y[9] = 1; full->RAW = Calloc(double, full->n * (full->m+1)); matrix_set(full->RAW, full->m+1, 0, 1, 1.0); matrix_set(full->RAW, full->m+1, 0, 2, 1.0); matrix_set(full->RAW, full->m+1, 1, 1, 2.0); matrix_set(full->RAW, full->m+1, 1, 2, 2.0); matrix_set(full->RAW, full->m+1, 2, 1, 3.0); matrix_set(full->RAW, full->m+1, 2, 2, 3.0); matrix_set(full->RAW, full->m+1, 3, 1, 4.0); matrix_set(full->RAW, full->m+1, 3, 2, 4.0); matrix_set(full->RAW, full->m+1, 4, 1, 5.0); matrix_set(full->RAW, full->m+1, 4, 2, 5.0); matrix_set(full->RAW, full->m+1, 5, 1, 6.0); matrix_set(full->RAW, full->m+1, 5, 2, 6.0); matrix_set(full->RAW, full->m+1, 6, 1, 7.0); matrix_set(full->RAW, full->m+1, 6, 2, 7.0); matrix_set(full->RAW, full->m+1, 7, 1, 8.0); matrix_set(full->RAW, full->m+1, 7, 2, 8.0); matrix_set(full->RAW, full->m+1, 8, 1, 9.0); matrix_set(full->RAW, full->m+1, 8, 2, 9.0); matrix_set(full->RAW, full->m+1, 9, 1, 10.0); matrix_set(full->RAW, full->m+1, 9, 2, 10.0); full->Z = full->RAW; // convert Z to a sparse matrix to test the sparse functions full->spZ = gensvm_dense_to_sparse(full->RAW, full->n, full->m+1); free(full->RAW); full->RAW = NULL; full->Z = NULL; long *cv_idx = Calloc(long, full->n); cv_idx[0] = 1; cv_idx[1] = 0; cv_idx[2] = 1; cv_idx[3] = 0; cv_idx[4] = 1; cv_idx[5] = 2; cv_idx[6] = 3; cv_idx[7] = 2; cv_idx[8] = 3; cv_idx[9] = 2; struct GenData *train = gensvm_init_data(); struct GenData *test = gensvm_init_data(); // start test code // gensvm_get_tt_split(full, train, test, cv_idx, 0); mu_assert(train->n == 8, "train_n incorrect."); mu_assert(test->n == 2, "test_n incorrect."); mu_assert(train->m == 2, "train_m incorrect."); mu_assert(test->m == 2, "test_m incorrect."); mu_assert(train->K == 3, "train_K incorrect."); mu_assert(test->K == 3, "test_K incorrect."); mu_assert(train->y[0] == 1, "train y incorrect."); mu_assert(train->y[1] == 3, "train y incorrect."); mu_assert(train->y[2] == 2, "train y incorrect."); mu_assert(train->y[3] == 3, "train y incorrect."); mu_assert(train->y[4] == 1, "train y incorrect."); mu_assert(train->y[5] == 2, "train y incorrect."); mu_assert(train->y[6] == 3, "train y incorrect."); mu_assert(train->y[7] == 1, "train y incorrect."); mu_assert(test->y[0] == 2, "test y incorrect."); mu_assert(test->y[1] == 1, "test y incorrect."); // check the train GenSparse struct mu_assert(train->spZ->nnz == 16, "train nnz incorrect"); mu_assert(train->spZ->n_row == 8, "train n_row incorrect"); mu_assert(train->spZ->n_col == 3, "train n_col incorrect"); mu_assert(train->spZ->values[0] == 1.0, "Wrong train value at 0"); mu_assert(train->spZ->values[1] == 1.0, "Wrong train value at 1"); mu_assert(train->spZ->values[2] == 3.0, "Wrong train value at 2"); mu_assert(train->spZ->values[3] == 3.0, "Wrong train value at 3"); mu_assert(train->spZ->values[4] == 5.0, "Wrong train value at 4"); mu_assert(train->spZ->values[5] == 5.0, "Wrong train value at 5"); mu_assert(train->spZ->values[6] == 6.0, "Wrong train value at 6"); mu_assert(train->spZ->values[7] == 6.0, "Wrong train value at 7"); mu_assert(train->spZ->values[8] == 7.0, "Wrong train value at 8"); mu_assert(train->spZ->values[9] == 7.0, "Wrong train value at 9"); mu_assert(train->spZ->values[10] == 8.0, "Wrong train value at 10"); mu_assert(train->spZ->values[11] == 8.0, "Wrong train value at 11"); mu_assert(train->spZ->values[12] == 9.0, "Wrong train value at 12"); mu_assert(train->spZ->values[13] == 9.0, "Wrong train value at 13"); mu_assert(train->spZ->values[14] == 10.0, "Wrong train value at 14"); mu_assert(train->spZ->values[15] == 10.0, "Wrong train value at 15"); mu_assert(train->spZ->ia[0] == 0, "Wrong train ia at 0"); mu_assert(train->spZ->ia[1] == 2, "Wrong train ia at 1"); mu_assert(train->spZ->ia[2] == 4, "Wrong train ia at 2"); mu_assert(train->spZ->ia[3] == 6, "Wrong train ia at 3"); mu_assert(train->spZ->ia[4] == 8, "Wrong train ia at 4"); mu_assert(train->spZ->ia[5] == 10, "Wrong train ia at 5"); mu_assert(train->spZ->ia[6] == 12, "Wrong train ia at 6"); mu_assert(train->spZ->ia[7] == 14, "Wrong train ia at 7"); mu_assert(train->spZ->ia[8] == 16, "Wrong train ia at 8"); mu_assert(train->spZ->ja[0] == 1, "Wrong train ja at 0"); mu_assert(train->spZ->ja[1] == 2, "Wrong train ja at 1"); mu_assert(train->spZ->ja[2] == 1, "Wrong train ja at 2"); mu_assert(train->spZ->ja[3] == 2, "Wrong train ja at 3"); mu_assert(train->spZ->ja[4] == 1, "Wrong train ja at 4"); mu_assert(train->spZ->ja[5] == 2, "Wrong train ja at 5"); mu_assert(train->spZ->ja[6] == 1, "Wrong train ja at 6"); mu_assert(train->spZ->ja[7] == 2, "Wrong train ja at 7"); mu_assert(train->spZ->ja[8] == 1, "Wrong train ja at 8"); mu_assert(train->spZ->ja[9] == 2, "Wrong train ja at 9"); mu_assert(train->spZ->ja[10] == 1, "Wrong train ja at 10"); mu_assert(train->spZ->ja[11] == 2, "Wrong train ja at 11"); mu_assert(train->spZ->ja[12] == 1, "Wrong train ja at 12"); mu_assert(train->spZ->ja[13] == 2, "Wrong train ja at 13"); mu_assert(train->spZ->ja[14] == 1, "Wrong train ja at 14"); mu_assert(train->spZ->ja[15] == 2, "Wrong train ja at 15"); // check the test GenSparse struct mu_assert(test->spZ->nnz == 4, "test nnz incorrect"); mu_assert(test->spZ->n_row == 2, "test n_row incorrect"); mu_assert(test->spZ->n_col == 3, "test n_col incorrect"); mu_assert(test->spZ->values[0] == 2.0, "Wrong test value at 0"); mu_assert(test->spZ->values[1] == 2.0, "Wrong test value at 1"); mu_assert(test->spZ->values[2] == 4.0, "Wrong test value at 2"); mu_assert(test->spZ->values[3] == 4.0, "Wrong test value at 3"); mu_assert(test->spZ->ia[0] == 0, "Wrong test ia at 0"); mu_assert(test->spZ->ia[1] == 2, "Wrong test ia at 1"); mu_assert(test->spZ->ia[2] == 4, "Wrong test ia at 2"); mu_assert(test->spZ->ja[0] == 1, "Wrong test ja at 0"); mu_assert(test->spZ->ja[1] == 2, "Wrong test ja at 1"); mu_assert(test->spZ->ja[2] == 1, "Wrong test ja at 2"); mu_assert(test->spZ->ja[3] == 2, "Wrong test ja at 3"); // end test code // gensvm_free_data(full); gensvm_free_data(train); gensvm_free_data(test); free(cv_idx); return NULL; } char *all_tests() { mu_suite_start(); mu_run_test(test_make_cv_split_1); mu_run_test(test_make_cv_split_2); mu_run_test(test_get_tt_split_dense); mu_run_test(test_get_tt_split_sparse); return NULL; } RUN_TESTS(all_tests);