/** * @file msvmmaj_pred.c * @author Gertjan van den Burg (burg@ese.eur.nl) * @date August 9, 2013 * @brief Main functions for predicting class labels.. * */ #include #include "libMSVMMaj.h" #include "MSVMMaj.h" #include "matrix.h" #include "msvmmaj_pred.h" /** * @name predict_labels * @brief Predict class labels of data given and output in predy * * The labels are predicted by mapping each instance in data to the * simplex space using the matrix V in the given model. Next, for each * instance the nearest simplex vertex is determined using an Euclidean * norm. The nearest simplex vertex determines the predicted class label, * which is recorded in predy * * @param [in] data data to predict labels for * @param [in] model model with optimized V * @param [out] predy pre-allocated vector to record predictions in */ void msvmmaj_predict_labels(struct MajData *data, struct MajModel *model, long *predy) { long i, j, k, label; double norm, min_dist; long n = data->n; // note that model->n is the size of the training sample. long m = data->m; long K = model->K; //data->K does not necessarily equal the original K. double *S = Calloc(double, K-1); double *ZV = Calloc(double, n*(K-1)); double *U = Calloc(double, K*(K-1)); // Get the simplex matrix msvmmaj_simplex_gen(K, U); // Generate the simplex-space vectors cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasNoTrans, n, K-1, m+1, 1.0, data->Z, m+1, model->V, K-1, 0.0, ZV, K-1); // Calculate the distance to each of the vertices of the simplex. // The closest vertex defines the class label. for (i=0; in; i++) if (data->y[i] == predy[i]) correct++; performance = ((double) correct)/((double) data->n)* 100.0; return performance; }