/** * @file gensvm_pred.c * @author Gertjan van den Burg * @date August 9, 2013 * @brief Main functions for predicting class labels.. * * @details * This file contains functions for predicting the class labels of instances * and a function for calculating the predictive performance (hitrate) of * a prediction given true class labels. * */ #include "gensvm_pred.h" /** * @brief Predict class labels of data given and output in predy * * @details * The labels are predicted by mapping each instance in data to the * simplex space using the matrix V in the given model. Next, for each * instance the nearest simplex vertex is determined using an Euclidean * norm. The nearest simplex vertex determines the predicted class label, * which is recorded in predy. * * @param[in] data GenData to predict labels for * @param[in] model GenModel with optimized V * @param[out] predy pre-allocated vector to record predictions in */ void gensvm_predict_labels(struct GenData *testdata, struct GenModel *model, long *predy) { long i, j, k, n, m, K, label; double norm, min_dist, *S, *ZV; n = testdata->n; m = testdata->r; K = model->K; // allocate necessary memory S = Calloc(double, K-1); ZV = Calloc(double, n*(K-1)); // Generate the simplex matrix gensvm_simplex(model); // Generate the simplex space vectors cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasNoTrans, n, K-1, m+1, 1.0, testdata->Z, m+1, model->V, K-1, 0.0, ZV, K-1); // Calculate the distance to each of the vertices of the simplex. // The closest vertex defines the class label for (i=0; iU, K-1, j, k); } norm = cblas_dnrm2(K-1, S, 1); if (norm < min_dist) { label = j+1; min_dist = norm; } } predy[i] = label; } free(ZV); free(S); } /** * @brief Calculate the predictive performance (percentage correct) * * @details * The predictive performance is calculated by simply counting the number * of correctly classified samples and dividing by the total number of * samples, multiplying by 100. * * @param[in] data the GenData dataset with known labels * @param[in] predy the predicted class labels * * @returns percentage correctly classified. */ double gensvm_prediction_perf(struct GenData *data, long *predy) { long i, correct = 0; double performance; for (i=0; in; i++) if (data->y[i] == predy[i]) correct++; performance = ((double) correct)/((double) data->n)* 100.0; return performance; }