/** * @file gensvm_pred.c * @author Gertjan van den Burg * @date August 9, 2013 * @brief Main functions for predicting class labels.. * * @details * This file contains functions for predicting the class labels of instances * and a function for calculating the predictive performance (hitrate) of * a prediction given true class labels. * */ #include #include "libGenSVM.h" #include "gensvm.h" #include "gensvm_kernel.h" #include "gensvm_matrix.h" #include "gensvm_pred.h" #include "util.h" // testing void gensvm_predict_labels(struct GenData *data_test, struct GenData *data_train, struct GenModel *model, long *predy) { if (model->kerneltype == K_LINEAR) gensvm_predict_labels_linear(data_test, model, predy); else gensvm_predict_labels_kernel(data_test, data_train, model, predy); } /** * @brief Predict class labels of data given and output in predy * * @details * The labels are predicted by mapping each instance in data to the * simplex space using the matrix V in the given model. Next, for each * instance the nearest simplex vertex is determined using an Euclidean * norm. The nearest simplex vertex determines the predicted class label, * which is recorded in predy. * * @param[in] data GenData to predict labels for * @param[in] model GenModel with optimized V * @param[out] predy pre-allocated vector to record predictions in */ void gensvm_predict_labels_linear(struct GenData *data, struct GenModel *model, long *predy) { long i, j, k, label; double norm, min_dist; long n = data->n; // note that model->n is the size of the training sample. long m = data->m; long K = model->K; //data->K does not necessarily equal the original K. double *S = Calloc(double, K-1); double *ZV = Calloc(double, n*(K-1)); double *U = Calloc(double, K*(K-1)); // Get the simplex matrix gensvm_simplex_gen(K, U); // Generate the simplex-space vectors cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasNoTrans, n, K-1, m+1, 1.0, data->Z, m+1, model->V, K-1, 0.0, ZV, K-1); // Calculate the distance to each of the vertices of the simplex. // The closest vertex defines the class label. for (i=0; in; long n_test = data_test->n; long r = model->m; long K = model->K; double *K2 = NULL; gensvm_make_crosskernel(model, data_train, data_test, &K2); double *S = Calloc(double, K-1); double *ZV = Calloc(double, n_test*(r+1)); double *KPS = Calloc(double, n_test*(r+1)); double *U = Calloc(double, K*(K-1)); gensvm_simplex_gen(K, U); // were doing the computations explicitly since P is included in // data_train->Z. Might want to look at this some more if it turns out // to be slow. double value, rowvalue; for (i=0; iZ, r+1, k, j); value += rowvalue; } value *= matrix_get(data_train->J, 1, j, 0); matrix_set(KPS, r+1, i, j, value); } matrix_set(KPS, r+1, i, 0, 1.0); } cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasNoTrans, n_test, K-1, r+1, 1.0, KPS, r+1, model->V, K-1, 0.0, ZV, K-1); for (i=0; in; i++) if (data->y[i] == predy[i]) correct++; performance = ((double) correct)/((double) data->n)* 100.0; return performance; }