/** * @file gensvm_lapack.c * @author Gertjan van den Burg * @date August 9, 2013 * @brief Utility functions for interacting with LAPACK * * @details * Functions in this file are auxiliary functions which make it easier * to use LAPACK functions from liblapack. */ #include "gensvm_lapack.h" /** * @brief Solve AX = B where A is symmetric positive definite. * * @details * Solve a linear system of equations AX = B where A is symmetric positive * definite. This function uses the externel LAPACK routine dposv. * * @param[in] UPLO which triangle of A is stored * @param[in] N order of A * @param[in] NRHS number of columns of B * @param[in,out] A double precision array of size (LDA, N). On * exit contains the upper or lower factor of the * Cholesky factorization of A. * @param[in] LDA leading dimension of A * @param[in,out] B double precision array of size (LDB, NRHS). On * exit contains the N-by-NRHS solution matrix X. * @param[in] LDB the leading dimension of B * @returns info parameter which contains the status of the * computation: * - =0: success * - <0: if -i, the i-th argument had * an illegal value * - >0: if i, the leading minor of A * was not positive definite * * See the LAPACK documentation at: * http://www.netlib.org/lapack/explore-html/dc/de9/group__double_p_osolve.html */ int dposv(char UPLO, int N, int NRHS, double *A, int LDA, double *B, int LDB) { extern void dposv_(char *UPLO, int *Np, int *NRHSp, double *A, int *LDAp, double *B, int *LDBp, int *INFOp); int INFO; dposv_(&UPLO, &N, &NRHS, A, &LDA, B, &LDB, &INFO); return INFO; } /** * @brief Solve a system of equations AX = B where A is symmetric. * * @details * Solve a linear system of equations AX = B where A is symmetric. This * function uses the external LAPACK routine dsysv. * * @param[in] UPLO which triangle of A is stored * @param[in] N order of A * @param[in] NRHS number of columns of B * @param[in,out] A double precision array of size (LDA, N). On * exit contains the block diagonal matrix D and * the multipliers used to obtain the factor U or * L from the factorization A = U*D*U**T or * A = L*D*L**T. * @param[in] LDA leading dimension of A * @param[in] IPIV integer array containing the details of D * @param[in,out] B double precision array of size (LDB, NRHS). On * exit contains the N-by-NRHS matrix X * @param[in] LDB leading dimension of B * @param[out] WORK double precision array of size max(1,LWORK). On * exit, WORK(1) contains the optimal LWORK * @param[in] LWORK the length of WORK, can be used for determining * the optimal blocksize for dsystrf. * @returns info parameter which contains the status of the * computation: * - =0: success * - <0: if -i, the i-th argument had an * illegal value * - >0: if i, D(i, i) is exactly zero, * no solution can be computed. * * See the LAPACK documentation at: * http://www.netlib.org/lapack/explore-html/d6/d0e/group__double_s_ysolve.html */ int dsysv(char UPLO, int N, int NRHS, double *A, int LDA, int *IPIV, double *B, int LDB, double *WORK, int LWORK) { extern void dsysv_(char *UPLO, int *Np, int *NRHSp, double *A, int *LDAp, int *IPIV, double *B, int *LDBp, double *WORK, int *LWORK, int *INFOp); int INFO; dsysv_(&UPLO, &N, &NRHS, A, &LDA, IPIV, B, &LDB, WORK, &LWORK, &INFO); return INFO; } /** * @brief Compute the eigenvalues and optionally the eigenvectors of a * symmetric matrix. * * @details * See the LAPACK documentation at: * http://www.netlib.org/lapack/explore-html/d2/d97/dsyevx_8f.html * * */ int dsyevx(char JOBZ, char RANGE, char UPLO, int N, double *A, int LDA, double VL, double VU, int IL, int IU, double ABSTOL, int *M, double *W, double *Z, int LDZ, double *WORK, int LWORK, int *IWORK, int *IFAIL) { extern void dsyevx_(char *JOBZ, char *RANGE, char *UPLO, int *Np, double *A, int *LDAp, double *VLp, double *VUp, int *ILp, int *IUp, double *ABSTOLp, int *M, double *W, double *Z, int *LDZp, double *WORK, int *LWORKp, int *IWORK, int *IFAIL, int *INFOp); int INFO; dsyevx_(&JOBZ, &RANGE, &UPLO, &N, A, &LDA, &VL, &VU, &IL, &IU, &ABSTOL, M, W, Z, &LDZ, WORK, &LWORK, IWORK, IFAIL, &INFO); return INFO; } /** * @brief Determine double precision machine parameters. * * @details * See the LAPACK documentation at: * http://www.netlib.org/lapack/explore-html/d5/dd4/dlamch_8f.html */ double dlamch(char CMACH) { extern double dlamch_(char *CMACH); return dlamch_(&CMACH); }