/** * @file GenSVMtraintest.c * @author Gertjan van den Burg * @date February, 2015 * @brief Command line interface for training and testing with a GenSVM model * * @details * This is a command line program for training and testing on a single model * with specified model parameters. * */ #include "gensvm_cmdarg.h" #include "gensvm_io.h" #include "gensvm_train.h" #include "gensvm_predict.h" #define MINARGS 2 extern FILE *GENSVM_OUTPUT_FILE; extern FILE *GENSVM_ERROR_FILE; // function declarations void exit_with_help(); void parse_command_line(int argc, char **argv, struct GenModel *model, char **model_inputfile, char **training_inputfile, char **testing_inputfile, char **model_outputfile, char **prediction_outputfile); void exit_with_help() { printf("This is GenSVM, version %1.1f\n\n", VERSION); printf("Usage: ./gensvm [options] training_data [test_data]\n"); printf("Options:\n"); printf("-c coef : coefficient for the polynomial and sigmoid kernel\n"); printf("-d degree : degree for the polynomial kernel\n"); printf("-e epsilon : set the value of the stopping criterion\n"); printf("-g gamma : parameter for the rbf, polynomial or sigmoid " "kernel\n"); printf("-h | -help : print this help.\n"); printf("-k kappa : set the value of kappa used in the Huber hinge\n"); printf("-l lambda : set the value of lambda (lambda > 0)\n"); printf("-s seed_model_file : use previous model as seed for V\n"); printf("-m model_output_file : write model output to file\n"); printf("-o prediction_output : write predictions of test data to " "file\n"); printf("-p p-value : set the value of p in the lp norm " "(1.0 <= p <= 2.0)\n"); printf("-q : quiet mode (no output, not even errors!)\n"); printf("-r rho : choose the weigth specification (1 = unit, 2 = " "group)\n"); printf("-t type: kerneltype (0=LINEAR, 1=POLY, 2=RBF, 3=SIGMOID)\n"); exit(EXIT_FAILURE); } int main(int argc, char **argv) { long i, *predy = NULL; double performance; char *training_inputfile = NULL, *testing_inputfile = NULL, *model_inputfile = NULL, *model_outputfile = NULL, *prediction_outputfile = NULL; struct GenModel *model = gensvm_init_model(); struct GenModel *seed_model = NULL; struct GenData *traindata = gensvm_init_data(); struct GenData *testdata = gensvm_init_data(); if (argc < MINARGS || gensvm_check_argv(argc, argv, "-help") || gensvm_check_argv_eq(argc, argv, "-h")) exit_with_help(); parse_command_line(argc, argv, model, &model_inputfile, &training_inputfile, &testing_inputfile, &model_outputfile, &prediction_outputfile); // read data from files gensvm_read_data(traindata, training_inputfile); model->data_file = Calloc(char, MAX_LINE_LENGTH); strcpy(model->data_file, training_inputfile); // seed the random number generator srand(time(NULL)); // load a seed model from file if it is specified if (gensvm_check_argv_eq(argc, argv, "-s")) { seed_model = gensvm_init_model(); gensvm_read_model(seed_model, model_inputfile); } // train the GenSVM model gensvm_train(model, traindata, seed_model); // if we also have a test set, predict labels and write to predictions // to an output file if specified if (testing_inputfile != NULL) { gensvm_read_data(testdata, testing_inputfile); gensvm_kernel_postprocess(model, traindata, testdata); // predict labels predy = Calloc(long, testdata->n); gensvm_predict_labels(testdata, model, predy); if (testdata->y != NULL) { performance = gensvm_prediction_perf(testdata, predy); note("Predictive performance: %3.2f%%\n", performance); } // if output file is specified, write predictions to it if (gensvm_check_argv_eq(argc, argv, "-o")) { gensvm_write_predictions(testdata, predy, prediction_outputfile); note("Prediction written to: %s\n", prediction_outputfile); } else { for (i=0; in; i++) printf("%li ", predy[i]); printf("\n"); } } // write model to output file if necessary if (gensvm_check_argv_eq(argc, argv, "-m")) { gensvm_write_model(model, model_outputfile); note("Model written to: %s\n", model_outputfile); } // free everything gensvm_free_model(model); gensvm_free_model(seed_model); gensvm_free_data(traindata); gensvm_free_data(testdata); free(training_inputfile); free(testing_inputfile); free(model_inputfile); free(model_outputfile); free(prediction_outputfile); free(predy); return 0; } void parse_command_line(int argc, char **argv, struct GenModel *model, char **model_inputfile, char **training_inputfile, char **testing_inputfile, char **model_outputfile, char **prediction_outputfile) { int i; double gamma = 1.0, degree = 2.0, coef = 0.0; GENSVM_OUTPUT_FILE = stdout; GENSVM_ERROR_FILE = stderr; // parse options for (i=1; i=argc) { exit_with_help(); } switch (argv[i-1][1]) { case 'c': coef = atof(argv[i]); break; case 'd': degree = atof(argv[i]); break; case 'e': model->epsilon = atof(argv[i]); break; case 'g': gamma = atof(argv[i]); break; case 'k': model->kappa = atof(argv[i]); break; case 'l': model->lambda = atof(argv[i]); break; case 's': (*model_inputfile) = Malloc(char, strlen(argv[i])+1); strcpy((*model_inputfile), argv[i]); break; case 'm': (*model_outputfile) = Malloc(char, strlen(argv[i])+1); strcpy((*model_outputfile), argv[i]); break; case 'o': (*prediction_outputfile) = Malloc(char, strlen(argv[i])+1); strcpy((*prediction_outputfile), argv[i]); break; case 'p': model->p = atof(argv[i]); break; case 'r': model->weight_idx = atoi(argv[i]); break; case 't': model->kerneltype = atoi(argv[i]); break; case 'q': GENSVM_OUTPUT_FILE = NULL; GENSVM_ERROR_FILE = NULL; i--; break; default: // this one should always print explicitly to // stderr, even if '-q' is supplied, because // otherwise you can't debug cmdline flags. fprintf(stderr, "Unknown option: -%c\n", argv[i-1][1]); exit_with_help(); } } if (i >= argc) exit_with_help(); (*training_inputfile) = Malloc(char, strlen(argv[i])+1); strcpy((*training_inputfile), argv[i]); if (i+2 == argc) { (*testing_inputfile) = Malloc(char, strlen(argv[i])+1); strcpy((*testing_inputfile), argv[i+1]); } // set kernel parameters switch (model->kerneltype) { case K_LINEAR: break; case K_POLY: model->kernelparam = Calloc(double, 3); model->kernelparam[0] = gamma; model->kernelparam[1] = coef; model->kernelparam[2] = degree; break; case K_RBF: model->kernelparam = Calloc(double, 1); model->kernelparam[0] = gamma; break; case K_SIGMOID: model->kernelparam = Calloc(double, 1); model->kernelparam[0] = gamma; model->kernelparam[1] = coef; } }