From 1e340d509f229120eb3aaa98c91028dc3c0d3305 Mon Sep 17 00:00:00 2001 From: Gertjan van den Burg Date: Mon, 25 Aug 2014 14:38:03 +0200 Subject: rename msvmmaj to gensvm --- src/msvmmaj_train_dataset.c | 748 -------------------------------------------- 1 file changed, 748 deletions(-) delete mode 100644 src/msvmmaj_train_dataset.c (limited to 'src/msvmmaj_train_dataset.c') diff --git a/src/msvmmaj_train_dataset.c b/src/msvmmaj_train_dataset.c deleted file mode 100644 index 26c684c..0000000 --- a/src/msvmmaj_train_dataset.c +++ /dev/null @@ -1,748 +0,0 @@ -/** - * @file msvmmaj_train_dataset.c - * @author Gertjan van den Burg - * @date January, 2014 - * @brief Functions for finding the optimal parameters for the dataset - * - * @details - * The MSVMMaj algorithm takes a number of parameters. The functions in - * this file are used to find the optimal parameters. - */ - -#include -#include - -#include "crossval.h" -#include "libMSVMMaj.h" -#include "msvmmaj.h" -#include "msvmmaj_init.h" -#include "msvmmaj_kernel.h" -#include "msvmmaj_matrix.h" -#include "msvmmaj_train.h" -#include "msvmmaj_train_dataset.h" -#include "msvmmaj_pred.h" -#include "util.h" -#include "timer.h" - -extern FILE *MSVMMAJ_OUTPUT_FILE; - -/** - * @brief Initialize a Queue from a Training instance - * - * @details - * A Training instance describes the grid to search over. This funtion - * creates all tasks that need to be performed and adds these to - * a Queue. Each task contains a pointer to the train and test datasets - * which are supplied. Note that the tasks are created in a specific order of - * the parameters, to ensure that the MajModel::V of a previous parameter - * set provides the best possible initial estimate of MajModel::V for the next - * parameter set. - * - * @param[in] training Training struct describing the grid search - * @param[in] queue pointer to a Queue that will be used to - * add the tasks to - * @param[in] train_data MajData of the training set - * @param[in] test_data MajData of the test set - * - */ -void make_queue(struct Training *training, struct Queue *queue, - struct MajData *train_data, struct MajData *test_data) -{ - long i, j, k; - long N, cnt = 0; - struct Task *task; - queue->i = 0; - - N = training->Np; - N *= training->Nl; - N *= training->Nk; - N *= training->Ne; - N *= training->Nw; - // these parameters are not necessarily non-zero - N *= training->Ng > 0 ? training->Ng : 1; - N *= training->Nc > 0 ? training->Nc : 1; - N *= training->Nd > 0 ? training->Nd : 1; - - queue->tasks = Malloc(struct Task *, N); - queue->N = N; - - // initialize all tasks - for (i=0; iID = i; - task->train_data = train_data; - task->test_data = test_data; - task->folds = training->folds; - task->kerneltype = training->kerneltype; - task->kernelparam = Calloc(double, training->Ng + - training->Nc + training->Nd); - queue->tasks[i] = task; - } - - // These loops mimick a large nested for loop. The advantage is that - // Nd, Nc and Ng which are on the outside of the nested for loop can - // now be zero, without large modification (see below). Whether this - // is indeed better than the nested for loop has not been tested. - cnt = 1; - i = 0; - while (i < N ) - for (j=0; jNp; j++) - for (k=0; ktasks[i]->p = training->ps[j]; - i++; - } - - cnt *= training->Np; - i = 0; - while (i < N ) - for (j=0; jNl; j++) - for (k=0; ktasks[i]->lambda = - training->lambdas[j]; - i++; - } - - cnt *= training->Nl; - i = 0; - while (i < N ) - for (j=0; jNk; j++) - for (k=0; ktasks[i]->kappa = training->kappas[j]; - i++; - } - - cnt *= training->Nk; - i = 0; - while (i < N ) - for (j=0; jNw; j++) - for (k=0; ktasks[i]->weight_idx = - training->weight_idxs[j]; - i++; - } - - cnt *= training->Nw; - i = 0; - while (i < N ) - for (j=0; jNe; j++) - for (k=0; ktasks[i]->epsilon = - training->epsilons[j]; - i++; - } - - cnt *= training->Ne; - i = 0; - while (i < N && training->Ng > 0) - for (j=0; jNg; j++) - for (k=0; ktasks[i]->kernelparam[0] = - training->gammas[j]; - i++; - } - - cnt *= training->Ng > 0 ? training->Ng : 1; - i = 0; - while (i < N && training->Nc > 0) - for (j=0; jNc; j++) - for (k=0; ktasks[i]->kernelparam[1] = - training->coefs[j]; - i++; - } - - cnt *= training->Nc > 0 ? training->Nc : 1; - i = 0; - while (i < N && training->Nd > 0) - for (j=0; jNd; j++) - for (k=0; ktasks[i]->kernelparam[2] = - training->degrees[j]; - i++; - } -} - -/** - * @brief Get new Task from Queue - * - * @details - * Return a pointer to the next Task in the Queue. If no Task instances are - * left, NULL is returned. The internal counter Queue::i is used for finding - * the next Task. - * - * @param[in] q Queue instance - * @returns pointer to next Task - * - */ -struct Task *get_next_task(struct Queue *q) -{ - long i = q->i; - if (i < q->N) { - q->i++; - return q->tasks[i]; - } - return NULL; -} - -/** - * @brief Comparison function for Tasks based on performance - * - * @details - * To be able to sort Task structures on the performance of their specific - * set of parameters, this comparison function is implemented. Task structs - * are sorted with highest performance first. - * - * @param[in] elem1 Task 1 - * @param[in] elem2 Task 2 - * @returns result of inequality of Task 1 performance over - * Task 2 performance - */ -int tasksort(const void *elem1, const void *elem2) -{ - const struct Task *t1 = (*(struct Task **) elem1); - const struct Task *t2 = (*(struct Task **) elem2); - return (t1->performance > t2->performance); -} - -/** - * @brief Comparison function for doubles - * - * @details - * Similar to tasksort() only now for two doubles. - * - * @param[in] elem1 number 1 - * @param[in] elem2 number 2 - * @returns comparison of number 1 larger than number 2 - */ -int doublesort(const void *elem1, const void *elem2) -{ - const double t1 = (*(double *) elem1); - const double t2 = (*(double *) elem2); - return t1 > t2; -} - -/** - * @brief Calculate the percentile of an array of doubles - * - * @details - * The percentile of performance is used to find the top performing - * configurations. Since no standard definition of the percentile exists, we - * use the method used in MATLAB and Octave. Since calculating the percentile - * requires a sorted list of the values, a local copy is made first. - * - * @param[in] values array of doubles - * @param[in] N length of the array - * @param[in] p percentile to calculate ( 0 <= p <= 1.0 ). - * @returns the p-th percentile of the values - */ -double prctile(double *values, long N, double p) -{ - long i; - double pi, pr, boundary; - double *local = Malloc(double, N); - for (i=0; itasks, q->N, sizeof(struct Task *), tasksort); - p = 0.95*q->N + 0.5; - pi = maximum(minimum(floor(p), q->N-1), 1); - pr = maximum(minimum(p - pi, 1), 0); - boundary = (1 - pr)*q->tasks[((long) pi)-1]->performance; - boundary += pr*q->tasks[((long) pi)]->performance; - note("boundary determined at: %f\n", boundary); - - // find the number of tasks that perform at least as good as the 95th - // percentile - N = 0; - for (i=0; iN; i++) - if (q->tasks[i]->performance >= boundary) - N++; - note("Number of items: %li\n", N); - std = Calloc(double, N); - mean = Calloc(double, N); - time = Calloc(double, N); - perf = Calloc(double, N*repeats); - - // create a new task queue with the tasks which perform well - nq->tasks = Malloc(struct Task *, N); - for (i=q->N-1; i>q->N-N-1; i--) - nq->tasks[q->N-i-1] = q->tasks[i]; - nq->N = N; - nq->i = 0; - - // for each task run the consistency repeats - for (i=0; in = 0; - model->m = task->train_data->m; - model->K = task->train_data->K; - msvmmaj_allocate_model(model); - msvmmaj_seed_model_V(NULL, model, task->train_data); - } - - time[i] = 0.0; - note("(%02li/%02li:%03li)\t", i+1, N, task->ID); - for (r=0; rtrain_data, - task->folds); - loop_e = clock(); - time[i] += elapsed_time(loop_s, loop_e); - matrix_set(perf, repeats, i, r, p); - mean[i] += p/((double) repeats); - } else { - note("Only cv is implemented\n"); - exit(1); - } - note("%3.3f\t", p); - // this is done because if we reuse the V it's not a - // consistency check - msvmmaj_seed_model_V(NULL, model, task->train_data); - } - for (r=0; r 1) { - std[i] /= ((double) repeats) - 1.0; - std[i] = sqrt(std[i]); - } else - std[i] = 0.0; - note("(m = %3.3f, s = %3.3f, t = %3.3f)\n", - mean[i], std[i], time[i]); - } - - // find the best overall configurations: those with high average - // performance and low deviation in the performance - note("\nBest overall configuration(s):\n"); - note("ID\tweights\tepsilon\t\tp\t\tkappa\t\tlambda\t\t" - "mean_perf\tstd_perf\ttime_perf\n"); - p = 0.0; - bool breakout = false; - while (breakout == false) { - pi = prctile(mean, N, (100.0-p)/100.0); - pr = prctile(std, N, p/100.0); - pt = prctile(time, N, p/100.0); - for (i=0; itasks[i]->ID, - nq->tasks[i]->weight_idx, - nq->tasks[i]->epsilon, - nq->tasks[i]->p, - nq->tasks[i]->kappa, - nq->tasks[i]->lambda, - mean[i], - std[i], - time[i]); - breakout = true; - } - p += 1.0; - } - - free(nq->tasks); - free(nq); - free(model); - free(perf); - free(std); - free(mean); - free(time); -} - -/** - * @brief Run cross validation with a seed model - * - * @details - * This is an implementation of cross validation which uses the optimal - * parameters MajModel::V of a previous fold as initial conditions for - * MajModel::V of the next fold. An initial seed for V can be given through the - * seed_model parameter. If seed_model is NULL, random starting values are - * used. - * - * @param[in] model MajModel with the configuration to train - * @param[in] seed_model MajModel with a seed for MajModel::V - * @param[in] data MajData with the dataset - * @param[in] folds number of cross validation folds - * @returns performance (hitrate) of the configuration on - * cross validation - */ -double cross_validation(struct MajModel *model, struct MajData *data, - long folds) -{ - FILE *fid; - - long f, *predy; - double performance, total_perf = 0; - struct MajData *train_data, *test_data; - - long *cv_idx = Calloc(long, data->n); - - train_data = msvmmaj_init_data(); - test_data = msvmmaj_init_data(); - - // create splits - msvmmaj_make_cv_split(data->n, folds, cv_idx); - - for (f=0; fn, train_data->m); - - msvmmaj_initialize_weights(train_data, model); - - // train the model (without output) - fid = MSVMMAJ_OUTPUT_FILE; - MSVMMAJ_OUTPUT_FILE = NULL; - msvmmaj_optimize(model, train_data); - MSVMMAJ_OUTPUT_FILE = fid; - - // calculate prediction performance on test set - predy = Calloc(long, test_data->n); - msvmmaj_predict_labels(test_data, train_data, model, predy); - performance = msvmmaj_prediction_perf(test_data, predy); - total_perf += performance * test_data->n; - - free(predy); - free(train_data->y); - free(train_data->Z); - free(test_data->y); - free(test_data->Z); - } - - free(train_data); - free(test_data); - - total_perf /= ((double) data->n); - - return total_perf; -} - -/** - * @brief Run the grid search for a cross validation dataset - * - * @details - * Given a Queue of Task struct to be trained, a grid search is launched to - * find the optimal parameter configuration. As is also done within - * cross_validation(), the optimal weights of one parameter set are used as - * initial estimates for MajModel::V in the next parameter set. Note that to - * optimally exploit this feature of the optimization algorithm, the order in - * which tasks are considered is important. This is considered in - * make_queue(). - * - * The performance found by cross validation is stored in the Task struct. - * - * @param[in,out] q Queue with Task instances to run - */ -void start_training_cv(struct Queue *q) -{ - double perf, current_max = 0; - struct Task *task = get_next_task(q); - struct MajModel *model = msvmmaj_init_model(); - clock_t main_s, main_e, loop_s, loop_e; - - model->n = 0; - model->m = task->train_data->m; - model->K = task->train_data->K; - msvmmaj_allocate_model(model); - msvmmaj_seed_model_V(NULL, model, task->train_data); - - main_s = clock(); - while (task) { - print_progress_string(task, q->N); - make_model_from_task(task, model); - - loop_s = clock(); - perf = cross_validation(model, task->train_data, task->folds); - loop_e = clock(); - current_max = maximum(current_max, perf); - - note("\t%3.3f%% (%3.3fs)\t(best = %3.3f%%)\n", perf, - elapsed_time(loop_s, loop_e), - current_max); - - q->tasks[task->ID]->performance = perf; - task = get_next_task(q); - } - main_e = clock(); - - note("\nTotal elapsed time: %8.8f seconds\n", - elapsed_time(main_s, main_e)); - - msvmmaj_free_model(model); -} - -/** - * @brief Run the grid search for a train/test dataset - * - * @details - * This function is similar to start_training_cv(), except that the - * pre-determined training set is used only once, and the pre-determined test - * set is used for validation. - * - * @todo - * It would probably be better to train the model on the training set using - * cross validation and only use the test set when comparing with other - * methods. The way it is now, you're finding out which parameters predict - * _this_ test set best, which is not what you want. This function should - * therefore not be used and is considered deprecated, to be removed in the - * future . - * - * @param[in] q Queue with Task structs to run - * - */ -void start_training_tt(struct Queue *q) -{ - FILE *fid; - - long c = 0; - long *predy; - double total_perf, current_max = 0; - - struct Task *task = get_next_task(q); - struct MajModel *seed_model = msvmmaj_init_model(); - - clock_t main_s, main_e; - clock_t loop_s, loop_e; - - seed_model->m = task->train_data->m; - seed_model->K = task->train_data->K; - msvmmaj_allocate_model(seed_model); - msvmmaj_seed_model_V(NULL, seed_model, task->train_data); - - main_s = clock(); - while (task) { - total_perf = 0; - note("(%li/%li)\tw = %li\te = %f\tp = %f\tk = %f\tl = %f\t", - c+1, q->N, task->weight_idx, task->epsilon, - task->p, task->kappa, task->lambda); - loop_s = clock(); - struct MajModel *model = msvmmaj_init_model(); - make_model_from_task(task, model); - - model->n = task->train_data->n; - model->m = task->train_data->m; - model->K = task->train_data->K; - - msvmmaj_allocate_model(model); - msvmmaj_initialize_weights(task->train_data, model); - msvmmaj_seed_model_V(seed_model, model, task->train_data); - - fid = MSVMMAJ_OUTPUT_FILE; - MSVMMAJ_OUTPUT_FILE = NULL; - msvmmaj_optimize(model, task->train_data); - MSVMMAJ_OUTPUT_FILE = fid; - - predy = Calloc(long, task->test_data->n); - msvmmaj_predict_labels(task->test_data, task->train_data, - model, predy); - if (task->test_data->y != NULL) - total_perf = msvmmaj_prediction_perf(task->test_data, - predy); - msvmmaj_seed_model_V(model, seed_model, task->train_data); - - msvmmaj_free_model(model); - free(predy); - note("."); - loop_e = clock(); - current_max = maximum(current_max, total_perf); - note("\t%3.3f%% (%3.3fs)\t(best = %3.3f%%)\n", total_perf, - elapsed_time(loop_s, loop_e), current_max); - q->tasks[task->ID]->performance = total_perf; - task = get_next_task(q); - } - main_e = clock(); - - note("\nTotal elapsed time: %8.8f seconds\n", - elapsed_time(main_s, main_e)); - free(task); - msvmmaj_free_model(seed_model); -} - -/** - * @brief Free the Queue struct - * - * @details - * Freeing the allocated memory of the Queue means freeing every Task struct - * and then freeing the Queue. - * - * @param[in] q Queue to be freed - * - */ -void free_queue(struct Queue *q) -{ - long i; - for (i=0; iN; i++) { - free(q->tasks[i]->kernelparam); - free(q->tasks[i]); - } - free(q->tasks); - free(q); -} - -/** - * @brief Copy parameters from Task to MajModel - * - * @details - * A Task struct only contains the parameters of the MajModel to be estimated. - * This function is used to copy these parameters. - * - * @param[in] task Task instance with parameters - * @param[in,out] model MajModel to which the parameters are copied - */ -void make_model_from_task(struct Task *task, struct MajModel *model) -{ - // copy basic model parameters - model->weight_idx = task->weight_idx; - model->epsilon = task->epsilon; - model->p = task->p; - model->kappa = task->kappa; - model->lambda = task->lambda; - - // copy kernel parameters - model->kerneltype = task->kerneltype; - model->kernelparam = task->kernelparam; -} - -/** - * @brief Copy model parameters between two MajModel structs - * - * @details - * The parameters copied are MajModel::weight_idx, MajModel::epsilon, - * MajModel::p, MajModel::kappa, and MajModel::lambda. - * - * @param[in] from MajModel to copy parameters from - * @param[in,out] to MajModel to copy parameters to - */ -void copy_model(struct MajModel *from, struct MajModel *to) -{ - to->weight_idx = from->weight_idx; - to->epsilon = from->epsilon; - to->p = from->p; - to->kappa = from->kappa; - to->lambda = from->lambda; - - to->kerneltype = from->kerneltype; - switch (to->kerneltype) { - case K_LINEAR: - break; - case K_POLY: - to->kernelparam = Malloc(double, 3); - to->kernelparam[0] = from->kernelparam[0]; - to->kernelparam[1] = from->kernelparam[1]; - to->kernelparam[2] = from->kernelparam[2]; - break; - case K_RBF: - to->kernelparam = Malloc(double, 1); - to->kernelparam[0] = from->kernelparam[0]; - break; - case K_SIGMOID: - to->kernelparam = Malloc(double, 2); - to->kernelparam[0] = from->kernelparam[0]; - to->kernelparam[1] = from->kernelparam[1]; - break; - } -} - -/** - * @brief Print the description of the current task on screen - * - * @details - * To track the progress of the grid search the parameters of the current task - * are written to the output specified in MSVMMAJ_OUTPUT_FILE. Since the - * parameters differ with the specified kernel, this function writes a - * parameter string depending on which kernel is used. - * - * @param[in] task the Task specified - * @param[in] N total number of tasks - * - */ -void print_progress_string(struct Task *task, long N) -{ - char buffer[MAX_LINE_LENGTH]; - sprintf(buffer, "(%03li/%03li)\t", task->ID+1, N); - if (task->kerneltype == K_POLY) - sprintf(buffer + strlen(buffer), "d = %2.2f\t", - task->kernelparam[2]); - if (task->kerneltype == K_POLY || task->kerneltype == K_SIGMOID) - sprintf(buffer + strlen(buffer), "c = %2.2f\t", - task->kernelparam[1]); - if (task->kerneltype == K_POLY || task->kerneltype == K_SIGMOID || - task->kerneltype == K_RBF) - sprintf(buffer + strlen(buffer), "g = %3.3f\t", - task->kernelparam[0]); - sprintf(buffer + strlen(buffer), "eps = %g\tw = %i\tk = %2.2f\t" - "l = %f\tp = %2.2f\t", task->epsilon, - task->weight_idx, task->kappa, task->lambda, task->p); - note(buffer); -} -- cgit v1.2.3