From 1e340d509f229120eb3aaa98c91028dc3c0d3305 Mon Sep 17 00:00:00 2001 From: Gertjan van den Burg Date: Mon, 25 Aug 2014 14:38:03 +0200 Subject: rename msvmmaj to gensvm --- src/msvmmaj_pred.c | 215 ----------------------------------------------------- 1 file changed, 215 deletions(-) delete mode 100644 src/msvmmaj_pred.c (limited to 'src/msvmmaj_pred.c') diff --git a/src/msvmmaj_pred.c b/src/msvmmaj_pred.c deleted file mode 100644 index ea1ebfe..0000000 --- a/src/msvmmaj_pred.c +++ /dev/null @@ -1,215 +0,0 @@ -/** - * @file msvmmaj_pred.c - * @author Gertjan van den Burg - * @date August 9, 2013 - * @brief Main functions for predicting class labels.. - * - * @details - * This file contains functions for predicting the class labels of instances - * and a function for calculating the predictive performance (hitrate) of - * a prediction given true class labels. - * - */ - -#include - -#include "libMSVMMaj.h" -#include "msvmmaj.h" -#include "msvmmaj_kernel.h" -#include "msvmmaj_matrix.h" -#include "msvmmaj_pred.h" - -#include "util.h" // testing - -void msvmmaj_predict_labels(struct MajData *data_test, - struct MajData *data_train, struct MajModel *model, - long *predy) -{ - if (model->kerneltype == K_LINEAR) - msvmmaj_predict_labels_linear(data_test, model, predy); - else - msvmmaj_predict_labels_kernel(data_test, data_train, model, - predy); -} - -/** - * @brief Predict class labels of data given and output in predy - * - * @details - * The labels are predicted by mapping each instance in data to the - * simplex space using the matrix V in the given model. Next, for each - * instance the nearest simplex vertex is determined using an Euclidean - * norm. The nearest simplex vertex determines the predicted class label, - * which is recorded in predy. - * - * @param[in] data MajData to predict labels for - * @param[in] model MajModel with optimized V - * @param[out] predy pre-allocated vector to record predictions in - */ -void msvmmaj_predict_labels_linear(struct MajData *data, - struct MajModel *model, long *predy) -{ - long i, j, k, label; - double norm, min_dist; - - long n = data->n; // note that model->n is the size of the training sample. - long m = data->m; - long K = model->K; //data->K does not necessarily equal the original K. - - double *S = Calloc(double, K-1); - double *ZV = Calloc(double, n*(K-1)); - double *U = Calloc(double, K*(K-1)); - - // Get the simplex matrix - msvmmaj_simplex_gen(K, U); - - // Generate the simplex-space vectors - cblas_dgemm( - CblasRowMajor, - CblasNoTrans, - CblasNoTrans, - n, - K-1, - m+1, - 1.0, - data->Z, - m+1, - model->V, - K-1, - 0.0, - ZV, - K-1); - - // Calculate the distance to each of the vertices of the simplex. - // The closest vertex defines the class label. - for (i=0; in; - long n_test = data_test->n; - long r = model->m; - long K = model->K; - - double *K2 = NULL; - msvmmaj_make_crosskernel(model, data_train, data_test, &K2); - - double *S = Calloc(double, K-1); - double *ZV = Calloc(double, n_test*(r+1)); - double *KPS = Calloc(double, n_test*(r+1)); - double *U = Calloc(double, K*(K-1)); - - msvmmaj_simplex_gen(K, U); - - // were doing the computations explicitly since P is included in - // data_train->Z. Might want to look at this some more if it turns out - // to be slow. - - double value, rowvalue; - for (i=0; iZ, r+1, k, - j); - value += rowvalue; - } - value *= matrix_get(data_train->J, 1, j, 0); - matrix_set(KPS, r+1, i, j, value); - } - matrix_set(KPS, r+1, i, 0, 1.0); - } - - cblas_dgemm( - CblasRowMajor, - CblasNoTrans, - CblasNoTrans, - n_test, - K-1, - r+1, - 1.0, - KPS, - r+1, - model->V, - K-1, - 0.0, - ZV, - K-1); - - for (i=0; in; i++) - if (data->y[i] == predy[i]) - correct++; - - performance = ((double) correct)/((double) data->n)* 100.0; - - return performance; -} -- cgit v1.2.3