From 993c503ce1b440be6947bc91fbf1fa6098569b51 Mon Sep 17 00:00:00 2001 From: Gertjan van den Burg Date: Mon, 9 May 2016 20:45:06 +0200 Subject: use gensvm namespace for all crossval/timer/util --- src/crossval.c | 143 --------------------------------------------------------- 1 file changed, 143 deletions(-) delete mode 100644 src/crossval.c (limited to 'src/crossval.c') diff --git a/src/crossval.c b/src/crossval.c deleted file mode 100644 index 85f9341..0000000 --- a/src/crossval.c +++ /dev/null @@ -1,143 +0,0 @@ -/** - * @file crossval.c - * @author Gertjan van den Burg - * @date January 7, 2014 - * @brief Functions for cross validation - * - * @details - * This file contains functions for performing cross validation. The funtion - * gensvm_make_cv_split() creates a cross validation vector for non-stratified - * cross validation. The function gensvm_get_tt_split() creates a train and - * test dataset from a given dataset and a pre-determined CV partition vector. - * See individual function documentation for details. - * - */ - -#include "crossval.h" -#include "gensvm.h" -#include "gensvm_matrix.h" - -/** - * @brief Create a cross validation split vector - * - * @details - * A pre-allocated vector of length N is created which can be used to define - * cross validation splits. The folds are contain between - * @f$ \lfloor N / folds \rfloor @f$ and @f$ \lceil N / folds \rceil @f$ - * instances. An instance is mapped to a partition randomly until all folds - * contain @f$ N \% folds @f$ instances. The zero fold then contains - * @f$ N / folds + N \% folds @f$ instances. These remaining @f$ N \% folds @f$ - * instances are then distributed over the first @f$ N \% folds @f$ folds. - * - * @param[in] N number of instances - * @param[in] folds number of folds - * @param[in,out] cv_idx array of size N which contains the fold index - * for each observation on exit - * - */ -void gensvm_make_cv_split(long N, long folds, long *cv_idx) -{ - long i, j, idx; - - for (i=0; in; - long m = full_data->m; - long K = full_data->K; - - double value; - - test_n = 0; - for (i=0; in = test_n; - train_data->n = train_n; - - train_data->K = K; - test_data->K = K; - - train_data->m = m; - test_data->m = m; - - train_data->y = Calloc(long, train_n); - test_data->y = Calloc(long, test_n); - - train_data->RAW = Calloc(double, train_n*(m+1)); - test_data->RAW = Calloc(double, test_n*(m+1)); - - k = 0; - l = 0; - for (i=0; iy[k] = full_data->y[i]; - for (j=0; jRAW, m+1, i, j); - matrix_set(test_data->RAW, m+1, k, j, value); - } - k++; - } else { - train_data->y[l] = full_data->y[i]; - for (j=0; jRAW, m+1, i, j); - matrix_set(train_data->RAW, m+1, l, j, value); - } - l++; - } - } - - train_data->Z = train_data->RAW; - test_data->Z = test_data->RAW; -} -- cgit v1.2.3