aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/GenSVMgrid.c (renamed from src/trainGenSVMdataset.c)2
-rw-r--r--src/GenSVMpred.c (renamed from src/predGenSVM.c)2
-rw-r--r--src/GenSVMtrain.c (renamed from src/trainGenSVM.c)2
-rw-r--r--src/gensvm_pred.c4
-rw-r--r--src/gensvm_train.c10
-rw-r--r--src/libGenSVM.c6
6 files changed, 13 insertions, 13 deletions
diff --git a/src/trainGenSVMdataset.c b/src/GenSVMgrid.c
index 2882c8f..eb1f477 100644
--- a/src/trainGenSVMdataset.c
+++ b/src/GenSVMgrid.c
@@ -1,5 +1,5 @@
/**
- * @file trainGenSVMdataset.c
+ * @file GenSVM_grid.c
* @author Gertjan van den Burg
* @date January, 2014
* @brief Command line interface for the grid search program
diff --git a/src/predGenSVM.c b/src/GenSVMpred.c
index 7fac2ef..c874aaf 100644
--- a/src/predGenSVM.c
+++ b/src/GenSVMpred.c
@@ -5,7 +5,7 @@
*/
/**
- * @file predGenSVM.c
+ * @file GenSVM_pred.c
* @author Gertjan van den Burg
* @date January, 2014
* @brief Command line interface for predicting class labels
diff --git a/src/trainGenSVM.c b/src/GenSVMtrain.c
index eb75f5d..0c1c6bc 100644
--- a/src/trainGenSVM.c
+++ b/src/GenSVMtrain.c
@@ -1,5 +1,5 @@
/**
- * @file trainGenSVM.c
+ * @file GenSVM_train.c
* @author Gertjan van den Burg
* @date August, 2013
* @brief Command line interface for training a single model with GenSVM
diff --git a/src/gensvm_pred.c b/src/gensvm_pred.c
index f331116..88678d7 100644
--- a/src/gensvm_pred.c
+++ b/src/gensvm_pred.c
@@ -65,7 +65,7 @@ void gensvm_predict_labels_linear(struct GenData *data,
// Generate the simplex-space vectors
cblas_dgemm(
- CblasRowGenor,
+ CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
n,
@@ -147,7 +147,7 @@ void gensvm_predict_labels_kernel(struct GenData *data_test,
}
cblas_dgemm(
- CblasRowGenor,
+ CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
n_test,
diff --git a/src/gensvm_train.c b/src/gensvm_train.c
index 9deac80..4100b8a 100644
--- a/src/gensvm_train.c
+++ b/src/gensvm_train.c
@@ -384,7 +384,7 @@ void gensvm_get_update(struct GenModel *model, struct GenData *data, double *B,
// Note that the use of dsym is faster than dspr, even
// though dspr uses less memory.
cblas_dsyr(
- CblasRowGenor,
+ CblasRowMajor,
CblasUpper,
m+1,
Avalue,
@@ -394,7 +394,7 @@ void gensvm_get_update(struct GenModel *model, struct GenData *data, double *B,
m+1);
}
// Copy upper to lower (necessary because we need to switch
- // to Col-Genor order for LAPACK).
+ // to Col-Major order for LAPACK).
/*
for (i=0; i<m+1; i++)
for (j=0; j<m+1; j++)
@@ -404,7 +404,7 @@ void gensvm_get_update(struct GenModel *model, struct GenData *data, double *B,
// Calculate the right hand side of the system we
// want to solve.
cblas_dsymm(
- CblasRowGenor,
+ CblasRowMajor,
CblasLeft,
CblasUpper,
m+1,
@@ -419,7 +419,7 @@ void gensvm_get_update(struct GenModel *model, struct GenData *data, double *B,
K-1);
cblas_dgemm(
- CblasRowGenor,
+ CblasRowMajor,
CblasTrans,
CblasNoTrans,
m+1,
@@ -445,7 +445,7 @@ void gensvm_get_update(struct GenModel *model, struct GenData *data, double *B,
}
// For the LAPACK call we need to switch to Column-
- // Genor order. This is unnecessary for the matrix
+ // Major order. This is unnecessary for the matrix
// ZAZ because it is symmetric. The matrix ZAZV
// must be converted however.
for (i=0; i<m+1; i++)
diff --git a/src/libGenSVM.c b/src/libGenSVM.c
index bb48673..b692bdb 100644
--- a/src/libGenSVM.c
+++ b/src/libGenSVM.c
@@ -138,7 +138,7 @@ void gensvm_calculate_errors(struct GenModel *model, struct GenData *data,
long K = model->K;
cblas_dgemm(
- CblasRowGenor,
+ CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
n,
@@ -255,8 +255,8 @@ void gensvm_seed_model_V(struct GenModel *from_model,
* @brief Use step doubling
*
* @details
- * Step doubling can be used to speed up the Genorization algorithm. Instead
- * of using the value at the minimimum of the majorization function, the value
+ * Step doubling can be used to speed up the maorization algorithm. Instead of
+ * using the value at the minimimum of the majorization function, the value
* ``opposite'' the majorization point is used. This can essentially cut the
* number of iterations necessary to reach the minimum in half.
*