diff options
Diffstat (limited to 'src/trainMSVMMaj.c')
| -rw-r--r-- | src/trainMSVMMaj.c | 250 |
1 files changed, 250 insertions, 0 deletions
diff --git a/src/trainMSVMMaj.c b/src/trainMSVMMaj.c new file mode 100644 index 0000000..9f71325 --- /dev/null +++ b/src/trainMSVMMaj.c @@ -0,0 +1,250 @@ +/** + * @file trainMSVMMaj.c + * @author Gertjan van den Burg + * @date August, 2013 + * @brief Command line interface for training a single model with MSVMMaj + * + * @details + * This is a command line program for training a single model on a given + * dataset. To run a grid search over a number of parameter configurations, + * see trainMSVMMajdataset.c. + * + */ + +#include <time.h> +#include <math.h> + +#include "msvmmaj_kernel.h" +#include "libMSVMMaj.h" +#include "msvmmaj.h" +#include "msvmmaj_io.h" +#include "msvmmaj_init.h" +#include "msvmmaj_train.h" +#include "util.h" + +#define MINARGS 2 + +extern FILE *MSVMMAJ_OUTPUT_FILE; + +// function declarations +void exit_with_help(); +void parse_command_line(int argc, char **argv, struct MajModel *model, + char *input_filename, char *output_filename, char *model_filename); + +/** + * @brief Help function + */ +void exit_with_help() +{ + printf("This is MSVMMaj, version %1.1f\n\n", VERSION); + printf("Usage: trainMSVMMaj [options] training_data_file\n"); + printf("Options:\n"); + printf("-c coef : coefficient for the polynomial and sigmoid kernel\n"); + printf("-d degree : degree for the polynomial kernel\n"); + printf("-e epsilon : set the value of the stopping criterion\n"); + printf("-g gamma : parameter for the rbf, polynomial or sigmoid " + "kernel\n"); + printf("-h | -help : print this help.\n"); + printf("-k kappa : set the value of kappa used in the Huber hinge\n"); + printf("-l lambda : set the value of lambda (lambda > 0)\n"); + printf("-m model_file : use previous model as seed for W and t\n"); + printf("-o output_file : write output to file\n"); + printf("-p p-value : set the value of p in the lp norm " + "(1.0 <= p <= 2.0)\n"); + printf("-q : quiet mode (no output)\n"); + printf("-r rho : choose the weigth specification (1 = unit, 2 = " + "group)\n"); + printf("-t type: kerneltype (LINEAR=0, POLY=1, RBF=2, SIGMOID=3)\n"); + printf("-u use_cholesky: use cholesky decomposition when using " + "kernels (0 = false, 1 = true). Default 0.\n"); + + exit(0); +} + +/** + * @brief Main interface function for trainMSVMMaj + * + * @details + * Main interface for the command line program. A given dataset file is read + * and a MSVMMaj model is trained on this data. By default the progress of the + * computations are written to stdout. See for full options of the program the + * help function. + * + * @param[in] argc number of command line arguments + * @param[in] argv array of command line arguments + * + */ +int main(int argc, char **argv) +{ + char input_filename[MAX_LINE_LENGTH]; + char model_filename[MAX_LINE_LENGTH]; + char output_filename[MAX_LINE_LENGTH]; + + struct MajModel *model = msvmmaj_init_model(); + struct MajData *data = msvmmaj_init_data(); + + if (argc < MINARGS || msvmmaj_check_argv(argc, argv, "-help") + || msvmmaj_check_argv_eq(argc, argv, "-h") ) + exit_with_help(); + parse_command_line(argc, argv, model, input_filename, + output_filename, model_filename); + + // read data file + msvmmaj_read_data(data, input_filename); + + // copy dataset parameters to model + model->n = data->n; + model->m = data->m; + model->K = data->K; + model->data_file = input_filename; + + // initialize kernel (if necessary) + msvmmaj_make_kernel(model, data); + + // allocate model and initialize weights + msvmmaj_allocate_model(model); + msvmmaj_initialize_weights(data, model); + + // seed the random number generator (only place in programs is in + // command line interfaces) + srand(time(NULL)); + + if (msvmmaj_check_argv_eq(argc, argv, "-m")) { + struct MajModel *seed_model = msvmmaj_init_model(); + msvmmaj_read_model(seed_model, model_filename); + msvmmaj_seed_model_V(seed_model, model); + msvmmaj_free_model(seed_model); + } else { + msvmmaj_seed_model_V(NULL, model); + } + + // start training + msvmmaj_optimize(model, data); + + // write_model to file + if (msvmmaj_check_argv_eq(argc, argv, "-o")) { + msvmmaj_write_model(model, output_filename); + note("Output written to %s\n", output_filename); + } + + // free model and data + msvmmaj_free_model(model); + msvmmaj_free_data(data); + + return 0; +} + +/** + * @brief Parse command line arguments + * + * @details + * Process the command line arguments for the model parameters, and record + * them in the specified MajModel. An input filename for the dataset is read + * and if specified an output filename and a model filename for the seed + * model. + * + * @param[in] argc number of command line arguments + * @param[in] argv array of command line arguments + * @param[in] model initialized model + * @param[in] input_filename pre-allocated buffer for the input + * filename + * @param[in] output_filename pre-allocated buffer for the output + * filename + * @param[in] model_filename pre-allocated buffer for the model + * filename + * + */ +void parse_command_line(int argc, char **argv, struct MajModel *model, + char *input_filename, char *output_filename, char *model_filename) +{ + int i, tmp; + double gamma = 1.0, + degree = 2.0, + coef = 0.0; + + MSVMMAJ_OUTPUT_FILE = stdout; + + // parse options + for (i=1; i<argc; i++) { + if (argv[i][0] != '-') break; + if (++i>=argc) { + exit_with_help(); + } + switch (argv[i-1][1]) { + case 'c': + coef = atof(argv[i]); + break; + case 'd': + degree = atof(argv[i]); + break; + case 'e': + model->epsilon = atof(argv[i]); + break; + case 'g': + gamma = atof(argv[i]); + break; + case 'k': + model->kappa = atof(argv[i]); + break; + case 'l': + model->lambda = atof(argv[i]); + break; + case 'm': + strcpy(model_filename, argv[i]); + break; + case 'o': + strcpy(output_filename, argv[i]); + break; + case 'p': + model->p = atof(argv[i]); + break; + case 'r': + model->weight_idx = atoi(argv[i]); + break; + case 't': + model->kerneltype = atoi(argv[i]); + break; + case 'u': + tmp = atoi(argv[i]); + if (!(tmp == 1 || tmp == 0)) + fprintf(stderr, "Unknown value %i for" + " use_cholesky", tmp); + model->use_cholesky = (tmp == 1) ? true : false; + break; + case 'q': + MSVMMAJ_OUTPUT_FILE = NULL; + i--; + break; + default: + fprintf(stderr, "Unknown option: -%c\n", + argv[i-1][1]); + exit_with_help(); + } + } + + // read input filename + if (i >= argc) + exit_with_help(); + + strcpy(input_filename, argv[i]); + + // set kernel parameters + switch (model->kerneltype) { + case K_LINEAR: + break; + case K_POLY: + model->kernelparam = Calloc(double, 3); + model->kernelparam[0] = gamma; + model->kernelparam[1] = coef; + model->kernelparam[2] = degree; + break; + case K_RBF: + model->kernelparam = Calloc(double, 1); + model->kernelparam[0] = gamma; + break; + case K_SIGMOID: + model->kernelparam = Calloc(double, 1); + model->kernelparam[0] = gamma; + model->kernelparam[1] = coef; + } +} |
