aboutsummaryrefslogtreecommitdiff
path: root/src/libMSVMMaj.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libMSVMMaj.c')
-rw-r--r--src/libMSVMMaj.c307
1 files changed, 307 insertions, 0 deletions
diff --git a/src/libMSVMMaj.c b/src/libMSVMMaj.c
new file mode 100644
index 0000000..a0bef97
--- /dev/null
+++ b/src/libMSVMMaj.c
@@ -0,0 +1,307 @@
+/**
+ * @file libMSVMMaj.c
+ * @author Gertjan van den Burg
+ * @date August 8, 2013
+ * @brief Main functions for the MSVMMaj algorithm
+ *
+ * @details
+ * The functions in this file are all functions needed
+ * to calculate the optimal separation boundaries for
+ * a multiclass classification problem, using the
+ * MSVMMaj algorithm.
+ *
+ */
+
+#include <cblas.h>
+#include <math.h>
+
+#include "libMSVMMaj.h"
+#include "msvmmaj.h"
+#include "msvmmaj_matrix.h"
+
+inline double rnd() { return (double) rand()/0x7FFFFFFF; }
+
+/**
+ * @brief Generate matrix of simplex vertex coordinates
+ *
+ * @details
+ * Generate the simplex matrix. Each row of the created
+ * matrix contains the coordinate vector of a single
+ * vertex of the K-simplex in K-1 dimensions. The simplex
+ * generated is a special simplex with edges of length 1.
+ * The simplex matrix U must already have been allocated.
+ *
+ * @param[in] K number of classes
+ * @param[in,out] U simplex matrix of size K * (K-1)
+ */
+void msvmmaj_simplex_gen(long K, double *U)
+{
+ long i, j;
+ for (i=0; i<K; i++) {
+ for (j=0; j<K-1; j++) {
+ if (i <= j) {
+ matrix_set(U, K-1, i, j, -1.0/sqrt(2.0*(j+1)*(j+2)));
+ } else if (i == j+1) {
+ matrix_set(U, K-1, i, j, sqrt((j+1)/(2.0*(j+2))));
+ } else {
+ matrix_set(U, K-1, i, j, 0.0);
+ }
+ }
+ }
+}
+
+/**
+ * @brief Generate the category matrix
+ *
+ * @details
+ * Generate the category matrix R. The category matrix has 1's everywhere
+ * except at the column corresponding to the label of instance i, there the
+ * element is 0.
+ *
+ * @param[in,out] model corresponding MajModel
+ * @param[in] dataset corresponding MajData
+ *
+ */
+void msvmmaj_category_matrix(struct MajModel *model, struct MajData *dataset)
+{
+ long i, j;
+ long n = model->n;
+ long K = model->K;
+
+ for (i=0; i<n; i++) {
+ for (j=0; j<K; j++) {
+ if (dataset->y[i] != j+1) {
+ matrix_set(model->R, K, i, j, 1.0);
+ }
+ }
+ }
+}
+
+/**
+ * @brief Generate the simplex difference matrix
+ *
+ * @details
+ * The simplex difference matrix is a 3D matrix which is constructed
+ * as follows. For each instance i, the difference vectors between the row of
+ * the simplex matrix corresponding to the class label of instance i and the
+ * other rows of the simplex matrix are calculated. These difference vectors
+ * are stored in a matrix, which is one horizontal slice of the 3D matrix.
+ *
+ * @param[in,out] model the corresponding MajModel
+ * @param[in] data the corresponding MajData
+ *
+ */
+void msvmmaj_simplex_diff(struct MajModel *model, struct MajData *data)
+{
+ long i, j, k;
+ double value;
+
+ long n = model->n;
+ long K = model->K;
+
+ for (i=0; i<n; i++) {
+ for (j=0; j<K-1; j++) {
+ for (k=0; k<K; k++) {
+ value = matrix_get(model->U, K-1, data->y[i]-1, j);
+ value -= matrix_get(model->U, K-1, k, j);
+ matrix3_set(model->UU, K-1, K, i, j, k, value);
+ }
+ }
+ }
+}
+
+/**
+ * @brief Calculate the scalar errors
+ *
+ * @details
+ * Calculate the scalar errors q based on the current estimate of V, and
+ * store these in Q. It is assumed that the memory for Q has already been
+ * allocated. In addition, the matrix ZV is calculated here. It is assigned
+ * to a pre-allocated block of memory, which is passed to this function.
+ *
+ * @param[in,out] model the corresponding MajModel
+ * @param[in] data the corresponding MajData
+ * @param[in,out] ZV a pointer to a memory block for ZV. On exit
+ * this block is updated with the new ZV matrix
+ * calculated with MajModel::V.
+ *
+ */
+void msvmmaj_calculate_errors(struct MajModel *model, struct MajData *data, double *ZV)
+{
+ long i, j, k;
+ double a, value;
+
+ long n = model->n;
+ long m = model->m;
+ long K = model->K;
+
+ cblas_dgemm(
+ CblasRowMajor,
+ CblasNoTrans,
+ CblasNoTrans,
+ n,
+ K-1,
+ m+1,
+ 1.0,
+ data->Z,
+ m+1,
+ model->V,
+ K-1,
+ 0.0,
+ ZV,
+ K-1);
+
+ Memset(model->Q, double, n*K);
+ for (i=0; i<n; i++) {
+ for (j=0; j<K-1; j++) {
+ a = matrix_get(ZV, K-1, i, j);
+ for (k=0; k<K; k++) {
+ value = a * matrix3_get(model->UU, K-1, K, i, j, k);
+ matrix_add(model->Q, K, i, k, value);
+ }
+ }
+ }
+}
+
+/**
+ * @brief Calculate the Huber hinge errors
+ *
+ * @details
+ * For each of the scalar errors in Q the Huber hinge errors are
+ * calculated. The Huber hinge is here defined as
+ * @f[
+ * h(q) =
+ * \begin{dcases}
+ * 1 - q - \frac{\kappa + 1}{2} & \text{if } q \leq -\kappa \\
+ * \frac{1}{2(\kappa + 1)} ( 1 - q)^2 & \text{if } q \in (-\kappa, 1] \\
+ * 0 & \text{if } q > 1
+ * \end{dcases}
+ * @f]
+ *
+ * @param[in,out] model the corresponding MajModel
+ */
+void msvmmaj_calculate_huber(struct MajModel *model)
+{
+ long i, j;
+ double q, value;
+
+ for (i=0; i<model->n; i++) {
+ for (j=0; j<model->K; j++) {
+ q = matrix_get(model->Q, model->K, i, j);
+ value = 0.0;
+ if (q <= -model->kappa) {
+ value = 1.0 - q - (model->kappa+1.0)/2.0;
+ } else if (q <= 1.0) {
+ value = 1.0/(2.0*model->kappa+2.0)*pow(1.0 - q, 2.0);
+ }
+ matrix_set(model->H, model->K, i, j, value);
+ }
+ }
+}
+
+/**
+ * @brief seed the matrix V from an existing model or using rand
+ *
+ * @details
+ * The matrix V must be seeded before the main_loop() can start.
+ * This can be done by either seeding it with random numbers or
+ * using the solution from a previous model on the same dataset
+ * as initial seed. The latter option usually allows for a
+ * significant improvement in the number of iterations necessary
+ * because the seeded model V is closer to the optimal V.
+ *
+ * @param[in] from_model MajModel from which to copy V
+ * @param[in,out] to_model MajModel to which V will be copied
+ */
+void msvmmaj_seed_model_V(struct MajModel *from_model, struct MajModel *to_model)
+{
+ long i, j;
+ long m = to_model->m;
+ long K = to_model->K;
+ double value;
+
+ if (from_model == NULL) {
+ for (i=0; i<m+1; i++)
+ for (j=0; j<K-1; j++)
+ matrix_set(to_model->V, K-1, i, j, -1.0+2.0*rnd());
+ } else {
+ for (i=0; i<m+1; i++)
+ for (j=0; j<K-1; j++) {
+ value = matrix_get(from_model->V, K-1, i, j);
+ matrix_set(to_model->V, K-1, i, j, value);
+ }
+ }
+}
+
+/**
+ * @brief Use step doubling
+ *
+ * @details
+ * Step doubling can be used to speed up the Majorization algorithm. Instead
+ * of using the value at the minimimum of the majorization function, the value
+ * ``opposite'' the majorization point is used. This can essentially cut the
+ * number of iterations necessary to reach the minimum in half.
+ *
+ * @param[in] model MajModel containing the augmented parameters
+ */
+void msvmmaj_step_doubling(struct MajModel *model)
+{
+ long i, j;
+
+ long m = model->m;
+ long K = model->K;
+
+ for (i=0; i<m+1; i++) {
+ for (j=0; j<K-1; j++) {
+ matrix_mul(model->V, K-1, i, j, 2.0);
+ matrix_add(model->V, K-1, i, j,
+ -matrix_get(model->Vbar, K-1, i, j));
+ }
+ }
+}
+
+/**
+ * @brief Initialize instance weights
+ *
+ * @details
+ * Instance weights can for instance be used to add additional weights to
+ * instances of certain classes. Two default weight possibilities are
+ * implemented here. The first is unit weights, where each instance gets
+ * weight 1.
+ *
+ * The second are group size correction weights, which are calculated as
+ * @f[
+ * \rho_i = \frac{n}{Kn_k} ,
+ * @f]
+ * where @f$ n_k @f$ is the number of instances in group @f$ k @f$ and
+ * @f$ y_i = k @f$.
+ *
+ * @param[in] data MajData with the dataset
+ * @param[in,out] model MajModel with the weight specification. On
+ * exit MajModel::rho contains the instance
+ * weights.
+ */
+void msvmmaj_initialize_weights(struct MajData *data, struct MajModel *model)
+{
+ long *groups;
+ long i;
+
+ long n = model->n;
+ long K = model->K;
+
+ if (model->weight_idx == 1) {
+ for (i=0; i<n; i++)
+ model->rho[i] = 1.0;
+ }
+ else if (model->weight_idx == 2) {
+ groups = Calloc(long, K);
+ for (i=0; i<n; i++)
+ groups[data->y[i]-1]++;
+ for (i=0; i<n; i++)
+ model->rho[i] = ((double) n)/((double) (groups[data->y[i]-1]*K));
+ } else {
+ fprintf(stderr, "Unknown weight specification.\n");
+ exit(1);
+ }
+}
+