diff options
Diffstat (limited to 'doc/specifications.c')
| -rw-r--r-- | doc/specifications.c | 170 |
1 files changed, 0 insertions, 170 deletions
diff --git a/doc/specifications.c b/doc/specifications.c deleted file mode 100644 index 5b5a8ae..0000000 --- a/doc/specifications.c +++ /dev/null @@ -1,170 +0,0 @@ -/** - * @page spec_training_file Training Input File Specification - * - * This page specifies the training file that can be parsed by - * read_training_from_file(). Below is an example training file. - * - * @verbatim - train: /path/to/training/dataset.txt - test: /path/to/test/dataset.txt - p: 1.0 1.5 2.0 - kappa: -0.9 0.0 1.0 - lambda: 64 16 4 1 0.25 0.0625 0.015625 0.00390625 0.0009765625 0.000244140625 - epsilon: 1e-6 - weight: 1 2 - folds: 10 - kernel: LINEAR - gamma: 1e-3 1e-1 1e1 1e3 - coef: 1.0 2.0 - degree: 2.0 3.0 - @endverbatim - * - * Note that with a @c LINEAR kernel specification, the @c gamma, @c coef, and - * @c degree parameters do not need to be specified. The above merely shows - * all available parameters that can be specified in the grid search. Below - * each of the parameters are described in more detail. Arguments followed by - * an asterisk are optional. - * - * @c train: @n - * The location of the training dataset file. See @ref spec_data_file for the - * specification of a dataset file. - * - * @c test:* @n - * The location of a test dataset file. See @ref spec_data_file for the - * specification of a dataset file. This is optional, if specified the - * train/test split will be used for training. - * - * @c p: @n - * The values of the @c p parameter of the algorithm to search over. The @c p - * parameter is used in the @f$ \ell_p @f$ norm over the Huber weighted scalar - * misclassification errors. Note: @f$ 1 \leq p \leq 2 @f$. - * - * @c kappa: @n - * The values of the @c kappa parameter of the algorithm to search over. The - * @c kappa parameter is used in the Huber hinge error over the scalar - * misclassification errors. Note: @f$ \kappa > -1 @f$. - * - * @c lambda: @n - * The values of the @c lambda parameter of the algorithm to search over. The - * @c lambda parameter is used in the regularization term of the loss - * function. Note: @f$ \lambda > 0 @f$. - * - * @c epsilon: @n - * The values of the @c epsilon parameter of the algorithm to search over. The - * @c epsilon parameter is used as the stopping parameter in the majorization - * algorithm. Note that it often suffices to use only one epsilon value. Using - * more than one value increases the size of the grid search considerably. - * - * @c weight: @n - * The weight specifications for the algorithm to use. Two weight - * specifications are implemented: the unit weights (index = 1) and the group - * size correction weights (index = 2). See also msvmmaj_initialize_weights(). - * - * @c folds: @n - * The number of cross validation folds to use. - * - * @c kernel:* @n - * Kernel to use in training. Only one kernel can be specified. See KernelType - * for available kernel functions. Note: if multiple kernel types are - * specified on this line, only the last value will be used (see the - * implementation of parse_kernel_str() for details). If no kernel is - * specified, the @c LINEAR kernel will be used. - * - * @c gamma:* @n - * Gamma parameters for the @c RBF, @c POLY, and @c SIGMOID kernels. This - * parameter is only optional if the @c LINEAR kernel is specified. See - * msvmmaj_compute_rbf(), msvmmaj_compute_poly(), and - * msvmmaj_compute_sigmoid() for kernel specifications. - * - * @c coef:* @n - * Coefficients for the @c POLY and @c SIGMOID kernels. This parameter is only - * optional if the @c LINEAR or @c RBF kernels are used. See - * msvmmaj_compute_poly() and msvmmaj_compute_sigmoid() for kernel - * specifications. - * - * @c degree:* @n - * Degrees to search over in the grid search when the @c POLY kernel is - * specified. With other kernel specifications this parameter is unnecessary. - * See msvmmaj_compute_poly() for the polynomial kernel specification. - * - */ - - -/** - * @page spec_data_file Data File Specification - * - * This page describes the input file format for a dataset. This specification - * is used by msvmmaj_read_data() and msvmmaj_write_predictions(). The data - * file specification is the same as that used in <a - * href="http://www.loria.fr/~lauer/MSVMpack/MSVMpack.html">MSVMpack</a> - * (verified in v. 1.3). - * - * The file is expected to be as follows - * @verbatim -n -m -x_11 x_12 ... x_1m y_1 -x_21 x_22 ... x_2m y_2 -... -x_n1 x_n2 ... x_nm y_n -@endverbatim - * - * Here, @c n denotes the number of instances and @c m denotes the number of - * predictors. The class labels @c y_i are expected in the final column of - * each line. - * - * As an example, below the first 5 lines of the iris dataset are shown. - * - * @verbatim -150 -4 -5.10000 3.50000 1.40000 0.20000 1.00000 -4.90000 3.00000 1.40000 0.20000 1.00000 -4.70000 3.20000 1.30000 0.20000 1.00000 -@endverbatim - * - */ - -/** - * @page spec_model_file Model File Specification - * - * This page describes the input file format for a MajModel. This - * specification is used by msvmmaj_read_model() and msvmmaj_write_model(). - * The model file is designed to fully reproduce a MajModel. - * - * The model output file follows the format - * @verbatim -Output file for MSVMMaj (version 0.1) -Generated on: Tue Jan 14 12:00:00 2014 (UTC +01:00) - -Model: -p = 2.00 -lambda = 0.001 -kappa = 1.0 -epsilon = 1e-06 -weight_idx = 1 - -Data: -filename = /path/to/data_file.txt -n = 150 -m = 4 -K = 3 - -Output: --0.7693429935131153 -1.9335141926875414 -+0.3425555992439160 +1.0939198172438194 -+0.3100589593140404 +0.9872012663780092 -+0.1319873613546321 +0.1207806485439152 -+0.8052481376988456 +0.6507524553955120 -@endverbatim - * - * The first two lines of the file mainly serve a logging purpose, and are - * ignored when reading the model file. The model section fully describes the - * model parameters. Next, the data section describes the data file that was - * used in training and the size of the dataset. Finally, the output section - * shows the augmented weight matrix MajModel::V, in row-major order. - * - * @todo - * Write kernel specification to model file as well and adjust the format - * above. - */ |
