# Loading a TCPD time series in Python The ``load_dataset.py`` file contains example code to load a time series as a ``TimeSeries`` object. ```python >>> from load_dataset import TimeSeries >>> ts = TimeSeries.from_json('../../datasets/ozone/ozone.json') ``` To export the time series as a [pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html#dataframe), simply use: ```python >>> ts.df t Total Emissions 0 0 380000.0 1 1 400000.0 2 2 440000.0 3 3 480000.0 4 4 510000.0 5 5 540000.0 ... ``` The ``TimeSeries`` instance ``ts`` has an integer time axis at ``ts.t`` and the observations at ``ts.y``. The time axis is zero-based by default. If you prefer to use a one-based indexing, simply run: ```python >>> ts.make_one_based() >>> ts.df t Total Emissions 0 1 380000.0 1 2 400000.0 2 3 440000.0 3 4 480000.0 4 5 510000.0 5 6 540000.0 ... ``` Many of the time series in TCPD have date or datetime labels for the time axis. This axis can be retrieved using: ```python >>> ts.datestr array(['1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968', ... '2009', '2010', '2011', '2012', '2013', '2014'], dtype='>> ts.datefmt '%Y' ```