#ifdef TARGETPYTHON #include "Python.h" #include #endif #ifndef TARGETPYTHON #define STRICT_R_HEADERS #include #include #include #include #include #endif /** * @brief Generate a single random number using the capped Tausworthe RNG * * @details * This generates random numbers according to the process described in [1]. As * an additional step, the resulting random number is capped to 0xFFFFFFFF * using a bitwise and. This is done to yield the range [0, 2^32-1]. On * return, the state variables are updated. * * [1]: @article{l1996maximally, * title={Maximally equidistributed combined Tausworthe generators}, * author={L’ecuyer, Pierre}, * journal={Mathematics of Computation of the American Mathematical * Society}, * volume={65}, * number={213}, * pages={203--213}, * year={1996} * } * * @param[in,out] state pointer to current state array * * @return a generated random number */ uint64_t lfsr113(uint64_t **state) { uint64_t z1, z2, z3, z4, b; z1 = (*state)[0]; z2 = (*state)[1]; z3 = (*state)[2]; z4 = (*state)[3]; b = (((z1 << 6) ^ z1) >> 13); z1 = (((z1 & 4294967294) << 18) ^ b); b = (((z2 << 2) ^ z2) >> 27); z2 = (((z2 & 4294967288) << 2) ^ b); b = (((z3 << 13) ^ z3) >> 21); z3 = (((z3 & 4294967280) << 7) ^ b); b = (((z4 << 3) ^ z4) >> 12); z4 = (((z4 & 4294967168) << 13) ^ b); b = (z1 ^ z2 ^ z3 ^ z4); (*state)[0] = z1; (*state)[1] = z2; (*state)[2] = z3; (*state)[3] = z4; b = b & 0xFFFFFFFF; return(b); } /** * @brief Seed the Tausworthe RNG using a seed value * * @details * This function seeds the state array using a supplied seed value. As noted * in [1] (see lfsr113()), the values of z1, z2, z3, and z4 should be larger * than 1, 7, 15, and 127 respectively. * * @param[in] seed user supplied seed value for the RNG * @param[out] state state of the RNG */ void lfsr113_seed(uint64_t seed, uint64_t **state) { uint64_t z1 = 2, z2 = 8, z3 = 16, z4 = 128; z1 = (z1 * (seed + 1)); z2 = (z2 * (seed + 1)); z3 = (z3 * (seed + 1)); z4 = (z4 * (seed + 1)); z1 = (z1 > 1) ? z1 : z1 + 1; z2 = (z2 > 7) ? z2 : z2 + 7; z3 = (z3 > 15) ? z3 : z3 + 15; z4 = (z4 > 127) ? z4 : z4 + 127; if (*state == NULL) { (*state) = malloc(sizeof(uint64_t)*4); } (*state)[0] = z1; (*state)[1] = z2; (*state)[2] = z3; (*state)[3] = z4; } #ifdef TARGETPYTHON /* * * Start of Python code * */ static PyObject *syncrng_seed(PyObject *self, PyObject *args) { uint64_t seed, *state = NULL; if (!PyArg_ParseTuple(args, "k", &seed)) return NULL; lfsr113_seed(seed, &state); PyObject *pystate = Py_BuildValue("[k, k, k, k]", state[0], state[1], state[2], state[3]); free(state); return pystate; } static PyObject *syncrng_rand(PyObject *self, PyObject *args) { uint64_t i, value, numints, *localstate; PyObject *listObj; PyObject *intObj; if (!PyArg_ParseTuple(args, "O!", &PyList_Type, &listObj)) return NULL; // we're just assuming you would never pass more than 4 values localstate = malloc(sizeof(uint64_t)*5); numints = PyList_Size(listObj); for (i=0; i= 3 static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "syncrng", "Python interface to SyncRNG", -1, SyncRNGMethods, NULL, NULL, NULL, NULL }; #endif static PyObject * moduleinit(void) { PyObject *m; #if PY_MAJOR_VERSION >= 3 m = PyModule_Create(&moduledef); #else m = Py_InitModule3("syncrng", SyncRNGMethods, "Python interface to SyncRNG"); #endif return m; } #if PY_MAJOR_VERSION >= 3 PyMODINIT_FUNC PyInit_syncrng(void) { return moduleinit(); } #else PyMODINIT_FUNC initsyncrng(void) { moduleinit(); } #endif #endif #ifndef TARGETPYTHON /* * * Start of R code * */ SEXP R_syncrng_seed(SEXP seed) { int i; double *pseed = REAL(seed), *pstate = NULL; uint64_t useed = (uint64_t) *pseed; uint64_t *state = NULL; lfsr113_seed(useed, &state); SEXP Rstate = PROTECT(allocVector(REALSXP, 5)); pstate = REAL(Rstate); for (i=0; i<4; i++) { pstate[i] = (double) state[i]; } pstate[4] = -1.0; free(state); UNPROTECT(1); return Rstate; } SEXP R_syncrng_rand(SEXP state) { uint64_t *localstate = malloc(sizeof(uint64_t)*4); double *pstate = REAL(state); int i; for (i=0; i<4; i++) { localstate[i] = (uint64_t) pstate[i]; } uint64_t rand = lfsr113(&localstate); SEXP Rstate = PROTECT(allocVector(REALSXP, 5)); pstate = REAL(Rstate); for (i=0; i<4; i++) { pstate[i] = (double) localstate[i]; } pstate[4] = (double) rand; UNPROTECT(1); free(localstate); return Rstate; } /* * * End of R code * */ #endif